eegdash.dataset.DS006366#
task-sleep_events.json (OpenNeuro ds006366). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
task-sleep_events.json |
Year |
2025 |
Authors |
Laura Rose, Alexander Neergaard Zahid, Javier García Ciudad, Christine Egebjerg, Louise Piilgaard, Frederikke Lynge Sørensen, Mie Andersen, Tessa Radovanovic, Anastasia Tsopanidou, Maiken Nedergaard, Sébastien Arthaud, Renato Maciel, Christelle Peyron, Chiara Berteotti, Viviana Lo Martire, Alessandro Silvani, Giovanna Zoccoli, Micaela Borsa, Antoine Adamantidis, Morten Mørup, Birgitte Rahbek Kornum |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds006366,
title = {task-sleep_events.json},
author = {Laura Rose and Alexander Neergaard Zahid and Javier García Ciudad and Christine Egebjerg and Louise Piilgaard and Frederikke Lynge Sørensen and Mie Andersen and Tessa Radovanovic and Anastasia Tsopanidou and Maiken Nedergaard and Sébastien Arthaud and Renato Maciel and Christelle Peyron and Chiara Berteotti and Viviana Lo Martire and Alessandro Silvani and Giovanna Zoccoli and Micaela Borsa and Antoine Adamantidis and Morten Mørup and Birgitte Rahbek Kornum},
doi = {10.18112/openneuro.ds006366.v1.0.1},
url = {https://doi.org/10.18112/openneuro.ds006366.v1.0.1},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 2 (43), 3 (71), 5 (34)
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds006366.v1.0.1
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS006366
dataset = DS006366(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS006366(cache_dir="./data", subject="01")
dataset = DS006366(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS006366(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds006366. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 92; recordings: 148; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006366 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006366 DOI: https://doi.org/10.18112/openneuro.ds006366.v1.0.1
Examples
>>> from eegdash.dataset import DS006366 >>> dataset = DS006366(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset