eegdash.dataset.DS004166#
participants.tsv (OpenNeuro ds004166). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2022 |
Authors |
Yang Li (data and curation), Wenjin Fu (data), Qiumei Zhang (data), Xiongying Chen (data), Xiaohong Li (data), Boqi Du (data), Xiaoxiang Deng (data), Feng Ji (curation), Qi Dong (curation), Feng Ji (curation), Susanne M. Jaeggi (curation), Chuansheng Chen (curation), Jun Li (data and curation) |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds004166,
title = {participants.tsv},
author = {Yang Li (data and curation) and Wenjin Fu (data) and Qiumei Zhang (data) and Xiongying Chen (data) and Xiaohong Li (data) and Boqi Du (data) and Xiaoxiang Deng (data) and Feng Ji (curation) and Qi Dong (curation) and Feng Ji (curation) and Susanne M. Jaeggi (curation) and Chuansheng Chen (curation) and Jun Li (data and curation)},
doi = {10.18112/openneuro.ds004166.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds004166.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: Unknown
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds004166.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS004166
dataset = DS004166(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS004166(cache_dir="./data", subject="01")
dataset = DS004166(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS004166(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds004166. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 213; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004166 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004166 DOI: https://doi.org/10.18112/openneuro.ds004166.v1.0.0
Examples
>>> from eegdash.dataset import DS004166 >>> dataset = DS004166(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset