eegdash.dataset.DS005486#
manifest.json (OpenNeuro ds005486). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
manifest.json |
Year |
2024 |
Authors |
Nahian S. Chowdhury, Chuan Bi, Andrew J. Furman, Alan KI Chiang, Patrick Skippen, Emily Si, Samantha K Millard, Sarah M. Margerison, Darrah Spies, Michael L. Keaser, Joyce T. Da Silva, Shuo Chen, Siobhan M. Schabrun, David A. Seminowicz |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds005486,
title = {manifest.json},
author = {Nahian S. Chowdhury and Chuan Bi and Andrew J. Furman and Alan KI Chiang and Patrick Skippen and Emily Si and Samantha K Millard and Sarah M. Margerison and Darrah Spies and Michael L. Keaser and Joyce T. Da Silva and Shuo Chen and Siobhan M. Schabrun and David A. Seminowicz},
doi = {10.18112/openneuro.ds005486.v1.0.1},
url = {https://doi.org/10.18112/openneuro.ds005486.v1.0.1},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: Unknown
Sampling rate (Hz): 5000.0 (399), 25000.0 (46)
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds005486.v1.0.1
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS005486
dataset = DS005486(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS005486(cache_dir="./data", subject="01")
dataset = DS005486(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS005486(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds005486. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 159; recordings: 445; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005486 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005486 DOI: https://doi.org/10.18112/openneuro.ds005486.v1.0.1
Examples
>>> from eegdash.dataset import DS005486 >>> dataset = DS005486(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset