eegdash.dataset.DS004844#
participants.tsv (OpenNeuro ds004844). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2023 |
Authors |
Jason S. Metcalfe, Victor Paul, Benamin Haynes, Corey Atwater, Amar Marathe, Gregory Gremillion, Kim Drnec, William Nothwang, Justin R. Estepp, Margaret Bowers, Jamie Lukos, Tony Johnson, Mike Dunkel, Stephen Gordon, Jon Touryan, Kevin King |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds004844,
title = {participants.tsv},
author = {Jason S. Metcalfe and Victor Paul and Benamin Haynes and Corey Atwater and Amar Marathe and Gregory Gremillion and Kim Drnec and William Nothwang and Justin R. Estepp and Margaret Bowers and Jamie Lukos and Tony Johnson and Mike Dunkel and Stephen Gordon and Jon Touryan and Kevin King},
doi = {10.18112/openneuro.ds004844.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds004844.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 64
Sampling rate (Hz): 1024.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds004844.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS004844
dataset = DS004844(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS004844(cache_dir="./data", subject="01")
dataset = DS004844(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS004844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds004844. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 68; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004844 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004844 DOI: https://doi.org/10.18112/openneuro.ds004844.v1.0.0
Examples
>>> from eegdash.dataset import DS004844 >>> dataset = DS004844(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset