eegdash.dataset.DS002158#

task-main_events.json (OpenNeuro ds002158). Access recordings and metadata through EEGDash.

Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro

Dataset Information#

Dataset ID

DS002158

Title

task-main_events.json

Year

2019

Authors

Michael Pereira, Nathan Faivre, Inaki Iturrate, Marco Wirthlin, Luana Serafini, Stephanie Martin, Arnaud Desvachez, Olaf Blanke, Dimitri Van de Ville, Jose del R. Millan

License

CC0

Citation / DOI

10.18112/openneuro.ds002158.v1.0.2

Source links

OpenNeuro | NeMAR | Source URL

Copy-paste BibTeX
@dataset{ds002158,
  title = {task-main_events.json},
  author = {Michael Pereira and Nathan Faivre and Inaki Iturrate and Marco Wirthlin and Luana Serafini and Stephanie Martin and Arnaud Desvachez and Olaf Blanke and Dimitri Van de Ville and Jose del R. Millan},
  doi = {10.18112/openneuro.ds002158.v1.0.2},
  url = {https://doi.org/10.18112/openneuro.ds002158.v1.0.2},
}

Highlights#

Subjects & recordings
  • Subjects: 0

  • Recordings: 0

  • Tasks: 0

Channels & sampling rate
  • Channels: Unknown

  • Sampling rate (Hz): Unknown

  • Duration (hours): 0

Tasks & conditions
  • Tasks: 0

  • Experiment type: Unknown

  • Subject type: Unknown

Files & format
  • Size on disk: Unknown

  • File count: Unknown

  • Format: Unknown

License & citation
  • License: CC0

  • DOI: 10.18112/openneuro.ds002158.v1.0.2

Provenance

Quickstart#

Install

pip install eegdash

Load a recording

from eegdash.dataset import DS002158

dataset = DS002158(cache_dir="./data")
recording = dataset[0]
raw = recording.load()

Filter/query

dataset = DS002158(cache_dir="./data", subject="01")
dataset = DS002158(
    cache_dir="./data",
    query={"subject": {"$in": ["01", "02"]}},
)

Quality & caveats#

  • No dataset-specific caveats are listed in the available metadata.

API#

class eegdash.dataset.DS002158(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#

Bases: EEGDashDataset

OpenNeuro dataset ds002158. Modality: eeg; Experiment type: Unknown; Subject type: Unknown. Subjects: 20; recordings: 117; tasks: 1.

Parameters:
  • cache_dir (str | Path) – Directory where data are cached locally.

  • query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str | None) – Base S3 bucket used to locate the data.

  • **kwargs (dict) – Additional keyword arguments forwarded to EEGDashDataset.

data_dir#

Local dataset cache directory (cache_dir / dataset_id).

Type:

Path

query#

Merged query with the dataset filter applied.

Type:

dict

records#

Metadata records used to build the dataset, if pre-fetched.

Type:

list[dict] | None

Notes

Each item is a recording; recording-level metadata are available via dataset.description. query supports MongoDB-style filters on fields in ALLOWED_QUERY_FIELDS and is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.

References

OpenNeuro dataset: https://openneuro.org/datasets/ds002158 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002158 DOI: https://doi.org/10.18112/openneuro.ds002158.v1.0.2

Examples

>>> from eegdash.dataset import DS002158
>>> dataset = DS002158(cache_dir="./data")
>>> recording = dataset[0]
>>> raw = recording.load()
__init__(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
save(path, overwrite=False)[source]#

Save the dataset to disk.

Parameters:
  • path (str or Path) – Destination file path.

  • overwrite (bool, default False) – If True, overwrite existing file.

Return type:

None

See Also#