eegdash.dataset.DS002158#
task-main_events.json (OpenNeuro ds002158). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
task-main_events.json |
Year |
2019 |
Authors |
Michael Pereira, Nathan Faivre, Inaki Iturrate, Marco Wirthlin, Luana Serafini, Stephanie Martin, Arnaud Desvachez, Olaf Blanke, Dimitri Van de Ville, Jose del R. Millan |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds002158,
title = {task-main_events.json},
author = {Michael Pereira and Nathan Faivre and Inaki Iturrate and Marco Wirthlin and Luana Serafini and Stephanie Martin and Arnaud Desvachez and Olaf Blanke and Dimitri Van de Ville and Jose del R. Millan},
doi = {10.18112/openneuro.ds002158.v1.0.2},
url = {https://doi.org/10.18112/openneuro.ds002158.v1.0.2},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: Unknown
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: 10.18112/openneuro.ds002158.v1.0.2
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS002158
dataset = DS002158(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS002158(cache_dir="./data", subject="01")
dataset = DS002158(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS002158(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds002158. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 117; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002158 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002158 DOI: https://doi.org/10.18112/openneuro.ds002158.v1.0.2
Examples
>>> from eegdash.dataset import DS002158 >>> dataset = DS002158(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset