eegdash.dataset.DS003876#
participants.tsv (OpenNeuro ds003876). Access recordings and metadata through EEGDash.
Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2021 |
Authors |
Gunnarsdottir, Kristin, Li, Adam, Smith, Rachel, Kang, Joon, Korzeniewska, Anna, Crone, Nathan, Rouse, Adam, Cheng, Jennifer, Kinsman, Michael, Landazuri, Patrick, Uysal, Utku, Ulloa, Carol, Cameron, Nathaniel, Cajigas, Iahn, Jagid, Jonathan, Kanner, Andres, Elarjani, Turki, Bicchi, Manuel, Inati, Sara, Zaghloul, Kareem, Boerwinkle, Varina, Wyckoff, Sarah, Barot, Niravkumar, Gonzalez-Martinez, Jorge, Sarma, Sridevi |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds003876,
title = {participants.tsv},
author = {Gunnarsdottir, Kristin and Li, Adam and Smith, Rachel and Kang, Joon and Korzeniewska, Anna and Crone, Nathan and Rouse, Adam and Cheng, Jennifer and Kinsman, Michael and Landazuri, Patrick and Uysal, Utku and Ulloa, Carol and Cameron, Nathaniel and Cajigas, Iahn and Jagid, Jonathan and Kanner, Andres and Elarjani, Turki and Bicchi, Manuel and Inati, Sara and Zaghloul, Kareem and Boerwinkle, Varina and Wyckoff, Sarah and Barot, Niravkumar and Gonzalez-Martinez, Jorge and Sarma, Sridevi},
doi = {10.18112/openneuro.ds003876.v1.0.2},
url = {https://doi.org/10.18112/openneuro.ds003876.v1.0.2},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 46, 134, 129 (8), 121, 170, 111 (2), 168, 47 (2), 101 (2), 95, 186, 114, 190, 86 (4), 118, 107, 146, 98 (4), 125, 110 (2), 128 (10), 135 (4), 193, 182, 147
Sampling rate (Hz): 999.4121105232217 (6), 499.7071044492829 (2), 1000.0 (25), 2000.0 (7), 500.0 (2), 1024.0 (5), 999.9999999999999 (4), 512.0, 1024.5997950800408 (2)
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds003876.v1.0.2
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS003876
dataset = DS003876(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS003876(cache_dir="./data", subject="01")
dataset = DS003876(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS003876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds003876. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003876 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003876 DOI: https://doi.org/10.18112/openneuro.ds003876.v1.0.2
Examples
>>> from eegdash.dataset import DS003876 >>> dataset = DS003876(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset