eegdash.dataset.DS005795#
scans.json (OpenNeuro ds005795). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
scans.json |
Year |
2025 |
Authors |
Jörg Stadler, Torsten Stöter, Nicole Angenstein, Andreas Fügner, Marcel Lommerzheim, Artur Mathysiak, Anke Michalsky, Gabriele Schöps, Johann van der Meer, Susann Wolff, André Brechmann |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds005795,
title = {scans.json},
author = {Jörg Stadler and Torsten Stöter and Nicole Angenstein and Andreas Fügner and Marcel Lommerzheim and Artur Mathysiak and Anke Michalsky and Gabriele Schöps and Johann van der Meer and Susann Wolff and André Brechmann},
doi = {10.18112/openneuro.ds005795.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds005795.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 72
Sampling rate (Hz): 500.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds005795.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS005795
dataset = DS005795(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS005795(cache_dir="./data", subject="01")
dataset = DS005795(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS005795(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds005795. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 39; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005795 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005795 DOI: https://doi.org/10.18112/openneuro.ds005795.v1.0.0
Examples
>>> from eegdash.dataset import DS005795 >>> dataset = DS005795(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset