eegdash.dataset.DS005574#
participants.tsv (OpenNeuro ds005574). Access recordings and metadata through EEGDash.
Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2024 |
Authors |
Zaid Zada, Samuel A. Nastase, Bobbi Aubrey, Itamar Jalon, Ariel Goldstein, Sebastian Michelmann, Haocheng Wang, Liat Hasenfratz, Werner Doyle, Daniel Friedman, Patricia Dugan, Lucia Melloni, Sasha Devore, Orrin Devinsky, Adeen Flinker, Uri Hasson |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds005574,
title = {participants.tsv},
author = {Zaid Zada and Samuel A. Nastase and Bobbi Aubrey and Itamar Jalon and Ariel Goldstein and Sebastian Michelmann and Haocheng Wang and Liat Hasenfratz and Werner Doyle and Daniel Friedman and Patricia Dugan and Lucia Melloni and Sasha Devore and Orrin Devinsky and Adeen Flinker and Uri Hasson},
doi = {10.18112/openneuro.ds005574.v1.0.2},
url = {https://doi.org/10.18112/openneuro.ds005574.v1.0.2},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 91, 174, 138, 114, 124, 264, 205, 178, 167
Sampling rate (Hz): 2048.0, 512.0 (8)
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds005574.v1.0.2
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS005574
dataset = DS005574(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS005574(cache_dir="./data", subject="01")
dataset = DS005574(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS005574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds005574. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005574 DOI: https://doi.org/10.18112/openneuro.ds005574.v1.0.2
Examples
>>> from eegdash.dataset import DS005574 >>> dataset = DS005574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset