eegdash.dataset.DS001785#
task-thrup_events.json (OpenNeuro ds001785). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
task-thrup_events.json |
Year |
2019 |
Authors |
Michael Pereira, Pierre Mégevand, Mi Xue Tan, Wenwen Chang, Shuo Wang, Ali Rezai, Margitta Seeck, Marco Corniola, Shahan Momjian, Fosco Bernasconi, Olaf Blanke, Nathan Faivre |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds001785,
title = {task-thrup_events.json},
author = {Michael Pereira and Pierre Mégevand and Mi Xue Tan and Wenwen Chang and Shuo Wang and Ali Rezai and Margitta Seeck and Marco Corniola and Shahan Momjian and Fosco Bernasconi and Olaf Blanke and Nathan Faivre},
doi = {10.18112/openneuro.ds001785.v1.1.1},
url = {https://doi.org/10.18112/openneuro.ds001785.v1.1.1},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 71
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: 10.18112/openneuro.ds001785.v1.1.1
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS001785
dataset = DS001785(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS001785(cache_dir="./data", subject="01")
dataset = DS001785(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS001785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds001785. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001785 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001785 DOI: https://doi.org/10.18112/openneuro.ds001785.v1.1.1
Examples
>>> from eegdash.dataset import DS001785 >>> dataset = DS001785(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset