eegdash.dataset.DS005383#
participants.tsv (OpenNeuro ds005383). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2024 |
Authors |
Yanru Bai, Qi Tang, Ran Zhao, Hongxing Liu, Mingkun Guo, Shuming Zhang, Minghan Guo, Junjie Wang, Changjian Wang, Mu Xing, Guangjian Ni, Dong Ming |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds005383,
title = {participants.tsv},
author = {Yanru Bai and Qi Tang and Ran Zhao and Hongxing Liu and Mingkun Guo and Shuming Zhang and Minghan Guo and Junjie Wang and Changjian Wang and Mu Xing and Guangjian Ni and Dong Ming},
doi = {10.18112/openneuro.ds005383.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds005383.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 30
Sampling rate (Hz): 200.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds005383.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS005383
dataset = DS005383(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS005383(cache_dir="./data", subject="01")
dataset = DS005383(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS005383(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds005383. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 240; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005383 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005383 DOI: https://doi.org/10.18112/openneuro.ds005383.v1.0.0
Examples
>>> from eegdash.dataset import DS005383 >>> dataset = DS005383(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset