eegdash.dataset.DS006234#
participants.tsv (OpenNeuro ds006234). Access recordings and metadata through EEGDash.
Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2025 |
Authors |
Ryuzaburo Kochi, Aya Kanno, Hiroshi Uda, Keisuke Hatano, Hidenori Endo, Michael Cools, Robert Rothermel, Aimee F. Luat, Eishi Asano |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds006234,
title = {participants.tsv},
author = {Ryuzaburo Kochi and Aya Kanno and Hiroshi Uda and Keisuke Hatano and Hidenori Endo and Michael Cools and Robert Rothermel and Aimee F. Luat and Eishi Asano},
doi = {10.18112/openneuro.ds006234.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds006234.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 134 (7), 138 (14), 130 (4), 96 (3), 64 (2), 112 (9), 142 (5), 150 (5), 164 (8), 128 (269), 118 (3), 136 (11), 140 (8), 110 (6), 156 (5), 148 (4), 84 (3), 152 (3), 132 (4), 58, 144 (4)
Sampling rate (Hz): 1000.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds006234.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS006234
dataset = DS006234(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS006234(cache_dir="./data", subject="01")
dataset = DS006234(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS006234(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds006234. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 119; recordings: 378; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006234 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006234 DOI: https://doi.org/10.18112/openneuro.ds006234.v1.0.0
Examples
>>> from eegdash.dataset import DS006234 >>> dataset = DS006234(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset