eegdash.dataset.DS004100#

participants.tsv (OpenNeuro ds004100). Access recordings and metadata through EEGDash.

Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro

Dataset Information#

Dataset ID

DS004100

Title

participants.tsv

Year

2022

Authors

John M. Bernabei, Adam Li, Andrew Y. Revell, Rachel J. Smith, Kristin M. Gunnarsdottir, Ian Z. Ong, Kathryn A. Davis, Nishant Sinha, Sridevi Sarma, Brian Litt

License

CC0

Citation / DOI

doi:10.18112/openneuro.ds004100.v1.1.3

Source links

OpenNeuro | NeMAR | Source URL

Copy-paste BibTeX
@dataset{ds004100,
  title = {participants.tsv},
  author = {John M. Bernabei and Adam Li and Andrew Y. Revell and Rachel J. Smith and Kristin M. Gunnarsdottir and Ian Z. Ong and Kathryn A. Davis and Nishant Sinha and Sridevi Sarma and Brian Litt},
  doi = {10.18112/openneuro.ds004100.v1.1.3},
  url = {https://doi.org/10.18112/openneuro.ds004100.v1.1.3},
}

Highlights#

Subjects & recordings
  • Subjects: 0

  • Recordings: 0

  • Tasks: 0

Channels & sampling rate
  • Channels: 122 (21), 108 (7), 162 (5), 126 (14), 61 (4), 52 (5), 94 (2), 121 (7), 85 (3), 92 (7), 90 (4), 74 (7), 149 (7), 102 (7), 190 (7), 88 (5), 71 (5), 186 (5), 120 (7), 105 (4), 59 (5), 232, 80 (7), 174 (7), 109 (7), 127 (12), 104 (13), 63 (5), 116 (5), 164 (5), 180 (12), 117 (7), 100 (5), 128 (18), 163 (6), 82 (12), 96 (12), 98 (6), 192 (2), 118 (17), 172 (15), 136 (7)

  • Sampling rate (Hz): 512.0 (165), 256.0 (7), 1024.0 (78), 500.0 (69)

  • Duration (hours): 0

Tasks & conditions
  • Tasks: 0

  • Experiment type: Unknown

  • Subject type: Unknown

Files & format
  • Size on disk: Unknown

  • File count: Unknown

  • Format: Unknown

License & citation
  • License: CC0

  • DOI: doi:10.18112/openneuro.ds004100.v1.1.3

Provenance

Quickstart#

Install

pip install eegdash

Load a recording

from eegdash.dataset import DS004100

dataset = DS004100(cache_dir="./data")
recording = dataset[0]
raw = recording.load()

Filter/query

dataset = DS004100(cache_dir="./data", subject="01")
dataset = DS004100(
    cache_dir="./data",
    query={"subject": {"$in": ["01", "02"]}},
)

Quality & caveats#

  • No dataset-specific caveats are listed in the available metadata.

API#

class eegdash.dataset.DS004100(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#

Bases: EEGDashDataset

OpenNeuro dataset ds004100. Modality: ieeg; Experiment type: Unknown; Subject type: Unknown. Subjects: 57; recordings: 319; tasks: 2.

Parameters:
  • cache_dir (str | Path) – Directory where data are cached locally.

  • query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str | None) – Base S3 bucket used to locate the data.

  • **kwargs (dict) – Additional keyword arguments forwarded to EEGDashDataset.

data_dir#

Local dataset cache directory (cache_dir / dataset_id).

Type:

Path

query#

Merged query with the dataset filter applied.

Type:

dict

records#

Metadata records used to build the dataset, if pre-fetched.

Type:

list[dict] | None

Notes

Each item is a recording; recording-level metadata are available via dataset.description. query supports MongoDB-style filters on fields in ALLOWED_QUERY_FIELDS and is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.

References

OpenNeuro dataset: https://openneuro.org/datasets/ds004100 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004100 DOI: https://doi.org/10.18112/openneuro.ds004100.v1.1.3

Examples

>>> from eegdash.dataset import DS004100
>>> dataset = DS004100(cache_dir="./data")
>>> recording = dataset[0]
>>> raw = recording.load()
__init__(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
save(path, overwrite=False)[source]#

Save the dataset to disk.

Parameters:
  • path (str or Path) – Destination file path.

  • overwrite (bool, default False) – If True, overwrite existing file.

Return type:

None

See Also#