eegdash.dataset.DS006036#
task-photomark_events.json (OpenNeuro ds006036). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
task-photomark_events.json |
Year |
2025 |
Authors |
Aimilia Ntetska, Andreas Miltiadous, Alexandros T. Tzallas, Katerina D. Tzimourta, Theodora Afrantou, Panagiotis Ioannidis, Dimitrios G. Tsalikakis, Nikolaos Grigoriadis, Pantelis Angelidis, Konstantinos Sakkas, Emmanouil D. Oikonomou, Nikolaos Giannakeas, Markos G. Tsipouras |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds006036,
title = {task-photomark_events.json},
author = {Aimilia Ntetska and Andreas Miltiadous and Alexandros T. Tzallas and Katerina D. Tzimourta and Theodora Afrantou and Panagiotis Ioannidis and Dimitrios G. Tsalikakis and Nikolaos Grigoriadis and Pantelis Angelidis and Konstantinos Sakkas and Emmanouil D. Oikonomou and Nikolaos Giannakeas and Markos G. Tsipouras},
doi = {10.18112/openneuro.ds006036.v1.0.5},
url = {https://doi.org/10.18112/openneuro.ds006036.v1.0.5},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 19
Sampling rate (Hz): 500.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds006036.v1.0.5
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS006036
dataset = DS006036(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS006036(cache_dir="./data", subject="01")
dataset = DS006036(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS006036(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds006036. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 88; recordings: 88; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006036 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006036 DOI: https://doi.org/10.18112/openneuro.ds006036.v1.0.5
Examples
>>> from eegdash.dataset import DS006036 >>> dataset = DS006036(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset