eegdash.dataset.DS003029#
participants.tsv (OpenNeuro ds003029). Access recordings and metadata through EEGDash.
Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2020 |
Authors |
Adam Li, Sara Inati, Kareem Zaghloul, Nathan Crone, William Anderson, Emily Johnson, Iahn Cajigas, Damian Brusko, Jonathan Jagid, Angel Claudio, Andres Kanner, Jennifer Hopp, Stephanie Chen, Jennifer Haagensen, Sridevi Sarma |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds003029,
title = {participants.tsv},
author = {Adam Li and Sara Inati and Kareem Zaghloul and Nathan Crone and William Anderson and Emily Johnson and Iahn Cajigas and Damian Brusko and Jonathan Jagid and Angel Claudio and Andres Kanner and Jennifer Hopp and Stephanie Chen and Jennifer Haagensen and Sridevi Sarma},
doi = {10.18112/openneuro.ds003029.v1.0.5},
url = {https://doi.org/10.18112/openneuro.ds003029.v1.0.5},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 86 (3), 60 (3), 135 (6), 99 (3), 132 (8), 129 (30), 216, 47, 98 (4), 81 (3), 147 (6), 111 (3), 88 (6), 53 (3), 91 (4), 89 (3), 101 (5), 80 (3), 110 (3), 123 (6), 65 (2)
Sampling rate (Hz): 1024.5997950800408, 1000.0000000000001 (7), 1000.0 (56), 2000.0000000000002 (3), 249.85355222464145 (10), 499.7071044492829 (7), 999.9999999999999 (9), 999.4121105232217 (13)
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds003029.v1.0.5
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS003029
dataset = DS003029(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS003029(cache_dir="./data", subject="01")
dataset = DS003029(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS003029(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds003029. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 35; recordings: 106; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003029 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003029 DOI: https://doi.org/10.18112/openneuro.ds003029.v1.0.5
Examples
>>> from eegdash.dataset import DS003029 >>> dataset = DS003029(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset