eegdash.dataset.DS004819#
participants.tsv (OpenNeuro ds004819). Access recordings and metadata through EEGDash.
Modality: [‘ieeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2023 |
Authors |
Keundong Lee, Angelique C. Paulk, Yun Goo Ro, Daniel R. Cleary, Karen J. Tonsfeldt, Yoav Kfir, John Pezaris, Youngbin Tchoe, Jihwan Lee, Andrew M. Bourhis, Ritwik Vatsyayan, Joel R. Martin, Samantha M. Russman, Jimmy C. Yang, Amy Baohan, R. Mark Richardson, Ziv M. Williams, Shelley I. Fried, Hoi Sang U, Ahmed M. Raslan, Sharona Ben-Haim, Eric Halgren, Sydney S. Cash, Shadi. A. Dayeh |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds004819,
title = {participants.tsv},
author = {Keundong Lee and Angelique C. Paulk and Yun Goo Ro and Daniel R. Cleary and Karen J. Tonsfeldt and Yoav Kfir and John Pezaris and Youngbin Tchoe and Jihwan Lee and Andrew M. Bourhis and Ritwik Vatsyayan and Joel R. Martin and Samantha M. Russman and Jimmy C. Yang and Amy Baohan and R. Mark Richardson and Ziv M. Williams and Shelley I. Fried and Hoi Sang U and Ahmed M. Raslan and Sharona Ben-Haim and Eric Halgren and Sydney S. Cash and Shadi. A. Dayeh},
doi = {10.18112/openneuro.ds004819.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds004819.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 64
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds004819.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS004819
dataset = DS004819(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS004819(cache_dir="./data", subject="01")
dataset = DS004819(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS004819(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds004819. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004819 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004819 DOI: https://doi.org/10.18112/openneuro.ds004819.v1.0.0
Examples
>>> from eegdash.dataset import DS004819 >>> dataset = DS004819(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset