eegdash.dataset.DS005752#
The NIMH Healthy Research Volunteer Dataset (OpenNeuro ds005752). Access recordings and metadata through EEGDash.
Modality: [‘meg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
The NIMH Healthy Research Volunteer Dataset |
Year |
Unknown |
Authors |
Allison C. Nugent, Adam G Thomas, Margaret Mahoney, Alison Gibbons, Jarrod Smith, Antoinette Charles, Jacob S Shaw, Jeffrey D Stout, Anna M Namyst, Arshitha Basavaraj, Eric Earl, Dustin Moraczewski, Emily Guinee, Michael Liu, Travis Riddle, Joseph Snow, Shruti Japee, Morgan Andrews, Adriana Pavletic, Stephen Sinclair, Vinai Roopchansingh, Peter A Bandettini, Joyce Chung |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds005752,
title = {The NIMH Healthy Research Volunteer Dataset},
author = {Allison C. Nugent and Adam G Thomas and Margaret Mahoney and Alison Gibbons and Jarrod Smith and Antoinette Charles and Jacob S Shaw and Jeffrey D Stout and Anna M Namyst and Arshitha Basavaraj and Eric Earl and Dustin Moraczewski and Emily Guinee and Michael Liu and Travis Riddle and Joseph Snow and Shruti Japee and Morgan Andrews and Adriana Pavletic and Stephen Sinclair and Vinai Roopchansingh and Peter A Bandettini and Joyce Chung},
doi = {10.18112/openneuro.ds005752.v2.1.0},
url = {https://doi.org/10.18112/openneuro.ds005752.v2.1.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: Unknown
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds005752.v2.1.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS005752
dataset = DS005752(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS005752(cache_dir="./data", subject="01")
dataset = DS005752(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS005752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds005752. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 253; recordings: 22385; tasks: 14.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005752 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005752 DOI: https://doi.org/10.18112/openneuro.ds005752.v2.1.0
Examples
>>> from eegdash.dataset import DS005752 >>> dataset = DS005752(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset