eegdash.dataset.DS006095#
participants.tsv (OpenNeuro ds006095). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2025 |
Authors |
Chang Liu, Erika M. Pliner, Jacob S. Salminen, Ryan Downey, Jungyun Hwang, Akraprava Roy, Ryland Swearinger, Natalie Richer, Chris J. Hass, David J. Clark, Todd M. Manini, Yenisel Cruz-Almeida, Rachael D. Seidler, Daniel P. Ferris |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds006095,
title = {participants.tsv},
author = {Chang Liu and Erika M. Pliner and Jacob S. Salminen and Ryan Downey and Jungyun Hwang and Akraprava Roy and Ryland Swearinger and Natalie Richer and Chris J. Hass and David J. Clark and Todd M. Manini and Yenisel Cruz-Almeida and Rachael D. Seidler and Daniel P. Ferris},
doi = {10.18112/openneuro.ds006095.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds006095.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 310 (115), 284 (1053), 336 (14)
Sampling rate (Hz): 500.0
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds006095.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS006095
dataset = DS006095(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS006095(cache_dir="./data", subject="01")
dataset = DS006095(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS006095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds006095. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 1182; tasks: 9.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006095 DOI: https://doi.org/10.18112/openneuro.ds006095.v1.0.0
Examples
>>> from eegdash.dataset import DS006095 >>> dataset = DS006095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset