eegdash.dataset.DS004395#
participants.tsv (OpenNeuro ds004395). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2023 |
Authors |
Michael J. Kahana, Joseph H. Rudoler, Lynn J. Lohnas, Karl Healey, Ada Aka, Adam Broitman, Elizabeth Crutchley, Patrick Crutchley, Kylie H. Alm, Brandon S. Katerman, Nicole E. Miller, Joel R. Kuhn, Yuxuan Li, Nicole M. Long, Jonathan Miller, Madison D. Paron, Jesse K. Pazdera, Isaac Pedisich, Christoph T. Weidemann |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds004395,
title = {participants.tsv},
author = {Michael J. Kahana and Joseph H. Rudoler and Lynn J. Lohnas and Karl Healey and Ada Aka and Adam Broitman and Elizabeth Crutchley and Patrick Crutchley and Kylie H. Alm and Brandon S. Katerman and Nicole E. Miller and Joel R. Kuhn and Yuxuan Li and Nicole M. Long and Jonathan Miller and Madison D. Paron and Jesse K. Pazdera and Isaac Pedisich and Christoph T. Weidemann},
doi = {10.18112/openneuro.ds004395.v2.0.0},
url = {https://doi.org/10.18112/openneuro.ds004395.v2.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 135 (10), 263 (2), 128 (1455), 125 (4978), 143, 136 (37)
Sampling rate (Hz): 500.0 (4946), 2048.0 (1466), 512.0 (28), 1000.0 (15), 250.0 (17), 1024.0 (11)
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds004395.v2.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS004395
dataset = DS004395(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS004395(cache_dir="./data", subject="01")
dataset = DS004395(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS004395(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds004395. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 364; recordings: 6483; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004395 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004395 DOI: https://doi.org/10.18112/openneuro.ds004395.v2.0.0
Examples
>>> from eegdash.dataset import DS004395 >>> dataset = DS004395(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset