eegdash.dataset.DS004105#

participants.tsv (OpenNeuro ds004105). Access recordings and metadata through EEGDash.

Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro

Dataset Information#

Dataset ID

DS004105

Title

participants.tsv

Year

2022

Authors

Javier Garcia (data), Justin Brooks (data), Scott Kerick (data), Tony Johnson (data and curation), Tim Mullen (data), Jean Vettel (data), Jonathan Touryan (curation), Kay Robbins (curation)

License

CC0

Citation / DOI

doi:10.18112/openneuro.ds004105.v1.0.0

Source links

OpenNeuro | NeMAR | Source URL

Copy-paste BibTeX
@dataset{ds004105,
  title = {participants.tsv},
  author = {Javier Garcia (data) and Justin Brooks (data) and Scott Kerick (data) and Tony Johnson (data and curation) and Tim Mullen (data) and Jean Vettel (data) and Jonathan Touryan (curation) and Kay Robbins (curation)},
  doi = {10.18112/openneuro.ds004105.v1.0.0},
  url = {https://doi.org/10.18112/openneuro.ds004105.v1.0.0},
}

Highlights#

Subjects & recordings
  • Subjects: 0

  • Recordings: 0

  • Tasks: 0

Channels & sampling rate
  • Channels: 74

  • Sampling rate (Hz): Unknown

  • Duration (hours): 0

Tasks & conditions
  • Tasks: 0

  • Experiment type: Unknown

  • Subject type: Unknown

Files & format
  • Size on disk: Unknown

  • File count: Unknown

  • Format: Unknown

License & citation
  • License: CC0

  • DOI: doi:10.18112/openneuro.ds004105.v1.0.0

Provenance

Quickstart#

Install

pip install eegdash

Load a recording

from eegdash.dataset import DS004105

dataset = DS004105(cache_dir="./data")
recording = dataset[0]
raw = recording.load()

Filter/query

dataset = DS004105(cache_dir="./data", subject="01")
dataset = DS004105(
    cache_dir="./data",
    query={"subject": {"$in": ["01", "02"]}},
)

Quality & caveats#

  • No dataset-specific caveats are listed in the available metadata.

API#

class eegdash.dataset.DS004105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#

Bases: EEGDashDataset

OpenNeuro dataset ds004105. Modality: eeg; Experiment type: Unknown; Subject type: Unknown. Subjects: 17; recordings: 34; tasks: 1.

Parameters:
  • cache_dir (str | Path) – Directory where data are cached locally.

  • query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str | None) – Base S3 bucket used to locate the data.

  • **kwargs (dict) – Additional keyword arguments forwarded to EEGDashDataset.

data_dir#

Local dataset cache directory (cache_dir / dataset_id).

Type:

Path

query#

Merged query with the dataset filter applied.

Type:

dict

records#

Metadata records used to build the dataset, if pre-fetched.

Type:

list[dict] | None

Notes

Each item is a recording; recording-level metadata are available via dataset.description. query supports MongoDB-style filters on fields in ALLOWED_QUERY_FIELDS and is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.

References

OpenNeuro dataset: https://openneuro.org/datasets/ds004105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004105 DOI: https://doi.org/10.18112/openneuro.ds004105.v1.0.0

Examples

>>> from eegdash.dataset import DS004105
>>> dataset = DS004105(cache_dir="./data")
>>> recording = dataset[0]
>>> raw = recording.load()
__init__(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
save(path, overwrite=False)[source]#

Save the dataset to disk.

Parameters:
  • path (str or Path) – Destination file path.

  • overwrite (bool, default False) – If True, overwrite existing file.

Return type:

None

See Also#