eegdash.dataset.DS004105#
participants.tsv (OpenNeuro ds004105). Access recordings and metadata through EEGDash.
Modality: [‘eeg’] Tasks: 0 License: CC0 Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
participants.tsv |
Year |
2022 |
Authors |
Javier Garcia (data), Justin Brooks (data), Scott Kerick (data), Tony Johnson (data and curation), Tim Mullen (data), Jean Vettel (data), Jonathan Touryan (curation), Kay Robbins (curation) |
License |
CC0 |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds004105,
title = {participants.tsv},
author = {Javier Garcia (data) and Justin Brooks (data) and Scott Kerick (data) and Tony Johnson (data and curation) and Tim Mullen (data) and Jean Vettel (data) and Jonathan Touryan (curation) and Kay Robbins (curation)},
doi = {10.18112/openneuro.ds004105.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds004105.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: 74
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: CC0
DOI: doi:10.18112/openneuro.ds004105.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS004105
dataset = DS004105(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS004105(cache_dir="./data", subject="01")
dataset = DS004105(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS004105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds004105. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004105 DOI: https://doi.org/10.18112/openneuro.ds004105.v1.0.0
Examples
>>> from eegdash.dataset import DS004105 >>> dataset = DS004105(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset