eegdash.dataset.DS002001#
Rivalry_Tagging (OpenNeuro ds002001). Access recordings and metadata through EEGDash.
Modality: [‘meg’] Tasks: 0 License: PD Subjects: 0 Recordings: 0 Source: openneuro
Dataset Information#
Dataset ID |
|
Title |
Rivalry_Tagging |
Year |
Unknown |
Authors |
Janine Mendola, Elizabeth Bock |
License |
PD |
Citation / DOI |
|
Source links |
OpenNeuro | NeMAR | Source URL |
Copy-paste BibTeX
@dataset{ds002001,
title = {Rivalry_Tagging},
author = {Janine Mendola and Elizabeth Bock},
doi = {10.18112/openneuro.ds002001.v1.0.0},
url = {https://doi.org/10.18112/openneuro.ds002001.v1.0.0},
}
Highlights#
Subjects: 0
Recordings: 0
Tasks: 0
Channels: Unknown
Sampling rate (Hz): Unknown
Duration (hours): 0
Tasks: 0
Experiment type: Unknown
Subject type: Unknown
Size on disk: Unknown
File count: Unknown
Format: Unknown
License: PD
DOI: 10.18112/openneuro.ds002001.v1.0.0
Quickstart#
Install
pip install eegdash
Load a recording
from eegdash.dataset import DS002001
dataset = DS002001(cache_dir="./data")
recording = dataset[0]
raw = recording.load()
Filter/query
dataset = DS002001(cache_dir="./data", subject="01")
dataset = DS002001(
cache_dir="./data",
query={"subject": {"$in": ["01", "02"]}},
)
Quality & caveats#
No dataset-specific caveats are listed in the available metadata.
API#
- class eegdash.dataset.DS002001(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]#
Bases:
EEGDashDatasetOpenNeuro dataset
ds002001. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 1006; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir#
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query#
Merged query with the dataset filter applied.
- Type:
dict
- records#
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002001 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002001 DOI: https://doi.org/10.18112/openneuro.ds002001.v1.0.0
Examples
>>> from eegdash.dataset import DS002001 >>> dataset = DS002001(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
See Also#
eegdash.dataset.EEGDashDataseteegdash.dataset