eegdash.features.feature_bank.signal module#
- class eegdash.features.feature_bank.signal.HilbertFeatureExtractor(feature_extractors: Dict[str, Callable], **preprocess_kwargs: Dict)[source]
Bases:
FeatureExtractor
- parent_extractor_type = (<class 'eegdash.features.extractors.FeatureExtractor'>,)
- preprocess(x)[source]
Apply pre-processing to the input data.
- Parameters:
*x (tuple) – Input data.
**kwargs – Additional keyword arguments.
- Returns:
The pre-processed data.
- Return type:
tuple
- eegdash.features.feature_bank.signal.signal_decorrelation_time(x, fs=1)[source]
- eegdash.features.feature_bank.signal.signal_hjorth_activity(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_hjorth_complexity(x)[source]
- eegdash.features.feature_bank.signal.signal_hjorth_mobility(x)[source]
- eegdash.features.feature_bank.signal.signal_kurtosis(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_line_length(x)[source]
- eegdash.features.feature_bank.signal.signal_mean(x)[source]
- eegdash.features.feature_bank.signal.signal_peak_to_peak(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_quantile(x, q: Number = 0.5, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_root_mean_square(x)[source]
- eegdash.features.feature_bank.signal.signal_skewness(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_std(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_variance(x, **kwargs)[source]
- eegdash.features.feature_bank.signal.signal_zero_crossings(x, threshold=1e-15)[source]