eegdash.features.feature_bank.complexity module#
- class eegdash.features.feature_bank.complexity.EntropyFeatureExtractor(feature_extractors: Dict[str, Callable], **preprocess_kwargs: Dict)[source]
Bases:
FeatureExtractor
- parent_extractor_type = (<class 'eegdash.features.extractors.FeatureExtractor'>, <class 'eegdash.features.feature_bank.signal.HilbertFeatureExtractor'>)
- preprocess(x, m=2, r=0.2, l=1)[source]
Apply pre-processing to the input data.
- Parameters:
*x (tuple) – Input data.
**kwargs – Additional keyword arguments.
- Returns:
The pre-processed data.
- Return type:
tuple
- eegdash.features.feature_bank.complexity.complexity_approx_entropy(counts_m, counts_mp1)[source]
- eegdash.features.feature_bank.complexity.complexity_lempel_ziv(x, threshold=None, normalize=True)[source]
- eegdash.features.feature_bank.complexity.complexity_sample_entropy(counts_m, counts_mp1)[source]
- eegdash.features.feature_bank.complexity.complexity_svd_entropy(x, m=10, tau=1)[source]