eegdash.features.feature_bank.complexity module#

class eegdash.features.feature_bank.complexity.EntropyFeatureExtractor(feature_extractors: Dict[str, Callable], **preprocess_kwargs: Dict)[source]

Bases: FeatureExtractor

parent_extractor_type = (<class 'eegdash.features.extractors.FeatureExtractor'>, <class 'eegdash.features.feature_bank.signal.HilbertFeatureExtractor'>)
preprocess(x, m=2, r=0.2, l=1)[source]

Apply pre-processing to the input data.

Parameters:
  • *x (tuple) – Input data.

  • **kwargs – Additional keyword arguments.

Returns:

The pre-processed data.

Return type:

tuple

eegdash.features.feature_bank.complexity.complexity_approx_entropy(counts_m, counts_mp1)[source]
eegdash.features.feature_bank.complexity.complexity_lempel_ziv(x, threshold=None, normalize=True)[source]
eegdash.features.feature_bank.complexity.complexity_sample_entropy(counts_m, counts_mp1)[source]
eegdash.features.feature_bank.complexity.complexity_svd_entropy(x, m=10, tau=1)[source]