eegdash.dataset package#
Submodules#
Module contents#
Public API for dataset helpers and dynamically generated datasets.
- class eegdash.dataset.DS000117(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000117. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 104; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000117 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000117 DOI: https://doi.org/10.18112/openneuro.ds000117.v1.1.0
Examples
>>> from eegdash.dataset import DS000117 >>> dataset = DS000117(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS000246(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000246. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 57; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000246 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000246 DOI: https://doi.org/10.18112/openneuro.ds000246.v1.0.1
Examples
>>> from eegdash.dataset import DS000246 >>> dataset = DS000246(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS000247(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000247. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 282; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000247 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000247 DOI: https://doi.org/10.18112/openneuro.ds000247.v1.0.2
Examples
>>> from eegdash.dataset import DS000247 >>> dataset = DS000247(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS000248(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000248. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000248 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000248 DOI: https://doi.org/10.18112/openneuro.ds000248.v1.2.4
Examples
>>> from eegdash.dataset import DS000248 >>> dataset = DS000248(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS001785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001785. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001785 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001785 DOI: https://doi.org/10.18112/openneuro.ds001785.v1.1.1
Examples
>>> from eegdash.dataset import DS001785 >>> dataset = DS001785(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS001787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001787. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001787 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001787 DOI: https://doi.org/10.18112/openneuro.ds001787.v1.1.1
Examples
>>> from eegdash.dataset import DS001787 >>> dataset = DS001787(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS001810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001810. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 263; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001810 DOI: https://doi.org/10.18112/openneuro.ds001810.v1.1.0
Examples
>>> from eegdash.dataset import DS001810 >>> dataset = DS001810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS001849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001849. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 120; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001849 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001849 DOI: https://doi.org/10.18112/openneuro.ds001849.v1.0.2
Examples
>>> from eegdash.dataset import DS001849 >>> dataset = DS001849(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS001971(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001971. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 273; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001971 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001971 DOI: https://doi.org/10.18112/openneuro.ds001971.v1.1.1
Examples
>>> from eegdash.dataset import DS001971 >>> dataset = DS001971(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002001(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002001. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 1006; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002001 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002001 DOI: https://doi.org/10.18112/openneuro.ds002001.v1.0.0
Examples
>>> from eegdash.dataset import DS002001 >>> dataset = DS002001(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002034. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 167; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002034 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002034 DOI: https://doi.org/10.18112/openneuro.ds002034.v1.0.3
Examples
>>> from eegdash.dataset import DS002034 >>> dataset = DS002034(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002094(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002094. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 43; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002094 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002094
Examples
>>> from eegdash.dataset import DS002094 >>> dataset = DS002094(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002158(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002158. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 117; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002158 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002158 DOI: https://doi.org/10.18112/openneuro.ds002158.v1.0.2
Examples
>>> from eegdash.dataset import DS002158 >>> dataset = DS002158(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002181(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002181. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 226; recordings: 226; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002181 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002181 DOI: https://doi.org/mockDOI
Examples
>>> from eegdash.dataset import DS002181 >>> dataset = DS002181(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002218(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002218. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002218 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002218 DOI: https://doi.org/mockDOI
Examples
>>> from eegdash.dataset import DS002218 >>> dataset = DS002218(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002312(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002312. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002312 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002312 DOI: https://doi.org/10.18112/openneuro.ds002312.v1.0.0
Examples
>>> from eegdash.dataset import DS002312 >>> dataset = DS002312(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002336(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002336. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 54; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002336 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002336 DOI: https://doi.org/10.18112/openneuro.ds002336.v2.0.2
Examples
>>> from eegdash.dataset import DS002336 >>> dataset = DS002336(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002338(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002338. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 85; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002338 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002338 DOI: https://doi.org/10.18112/openneuro.ds002338.v2.0.1
Examples
>>> from eegdash.dataset import DS002338 >>> dataset = DS002338(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002550(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002550. Modality:meg; Experiment type:Unknown; Subject type:Working memory. Subjects: 23; recordings: 12754; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002550 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002550 DOI: https://doi.org/10.18112/openneuro.ds002550.v1.0.1
Examples
>>> from eegdash.dataset import DS002550 >>> dataset = DS002550(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002578(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002578. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 2; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002578 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002578 DOI: https://doi.org/10.18112/openneuro.ds002578.v1.1.0
Examples
>>> from eegdash.dataset import DS002578 >>> dataset = DS002578(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002680(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002680. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 350; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002680 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002680 DOI: https://doi.org/10.18112/openneuro.ds002680.v1.2.0
Examples
>>> from eegdash.dataset import DS002680 >>> dataset = DS002680(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002691(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002691. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002691 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002691 DOI: https://doi.org/10.18112/openneuro.ds002691.v1.1.0
Examples
>>> from eegdash.dataset import DS002691 >>> dataset = DS002691(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002712(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002712. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 82; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002712 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002712 DOI: https://doi.org/10.18112/openneuro.ds002712.v1.0.1
Examples
>>> from eegdash.dataset import DS002712 >>> dataset = DS002712(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002718. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002718 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002718 DOI: https://doi.org/10.18112/openneuro.ds002718.v1.1.0
Examples
>>> from eegdash.dataset import DS002718 >>> dataset = DS002718(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002720(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002720. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 165; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002720 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002720 DOI: https://doi.org/10.18112/openneuro.ds002720.v1.0.1
Examples
>>> from eegdash.dataset import DS002720 >>> dataset = DS002720(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002721(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002721. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 185; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002721 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002721 DOI: https://doi.org/10.18112/openneuro.ds002721.v1.0.2
Examples
>>> from eegdash.dataset import DS002721 >>> dataset = DS002721(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002722(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002722. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 94; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002722 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002722 DOI: https://doi.org/10.18112/openneuro.ds002722.v1.0.1
Examples
>>> from eegdash.dataset import DS002722 >>> dataset = DS002722(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002723(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002723. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 44; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002723 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002723 DOI: https://doi.org/10.18112/openneuro.ds002723.v1.1.0
Examples
>>> from eegdash.dataset import DS002723 >>> dataset = DS002723(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002724(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002724. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 96; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002724 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002724 DOI: https://doi.org/10.18112/openneuro.ds002724.v1.0.1
Examples
>>> from eegdash.dataset import DS002724 >>> dataset = DS002724(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002725(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002725. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 105; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002725 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002725 DOI: https://doi.org/10.18112/openneuro.ds002725.v1.0.0
Examples
>>> from eegdash.dataset import DS002725 >>> dataset = DS002725(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002761(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002761. Modality:meg; Experiment type:Unknown; Subject type:MEG. Subjects: 26; recordings: 2806; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002761 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002761 DOI: https://doi.org/10.18112/openneuro.ds002761.v1.1.2
Examples
>>> from eegdash.dataset import DS002761 >>> dataset = DS002761(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002778(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002778. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 46; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002778 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002778 DOI: https://doi.org/10.18112/openneuro.ds002778.v1.0.5
Examples
>>> from eegdash.dataset import DS002778 >>> dataset = DS002778(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002791(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002791. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 92; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002791 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002791 DOI: https://doi.org/10.18112/openneuro.ds002791.v1.0.0
Examples
>>> from eegdash.dataset import DS002791 >>> dataset = DS002791(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002799(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002799. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 16824; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002799 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002799 DOI: https://doi.org/10.18112/openneuro.ds002799.v1.0.4
Examples
>>> from eegdash.dataset import DS002799 >>> dataset = DS002799(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002814(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002814. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 168; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002814 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002814 DOI: https://doi.org/10.18112/openneuro.ds002814.v1.3.0
Examples
>>> from eegdash.dataset import DS002814 >>> dataset = DS002814(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002833(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002833. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002833 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002833 DOI: https://doi.org/10.18112/openneuro.ds002833.v1.0.0
Examples
>>> from eegdash.dataset import DS002833 >>> dataset = DS002833(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002885(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002885. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 7; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002885 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002885 DOI: https://doi.org/10.18112/openneuro.ds002885.v1.0.1
Examples
>>> from eegdash.dataset import DS002885 >>> dataset = DS002885(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002893(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002893. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 49; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002893 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002893 DOI: https://doi.org/10.18112/openneuro.ds002893.v2.0.0
Examples
>>> from eegdash.dataset import DS002893 >>> dataset = DS002893(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS002908(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002908. Modality:meg; Experiment type:Unknown; Subject type:Decision Making. Subjects: 14; recordings: 539; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002908 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002908 DOI: https://doi.org/10.18112/openneuro.ds002908.v1.0.0
Examples
>>> from eegdash.dataset import DS002908 >>> dataset = DS002908(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003004(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003004. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003004 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003004 DOI: https://doi.org/10.18112/openneuro.ds003004.v1.1.1
Examples
>>> from eegdash.dataset import DS003004 >>> dataset = DS003004(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003029(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003029. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 35; recordings: 106; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003029 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003029 DOI: https://doi.org/10.18112/openneuro.ds003029.v1.0.5
Examples
>>> from eegdash.dataset import DS003029 >>> dataset = DS003029(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003039(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003039. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003039 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003039 DOI: https://doi.org/10.18112/openneuro.ds003039.v1.0.2
Examples
>>> from eegdash.dataset import DS003039 >>> dataset = DS003039(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003061(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003061. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003061 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003061 DOI: https://doi.org/10.18112/openneuro.ds003061.v1.1.0
Examples
>>> from eegdash.dataset import DS003061 >>> dataset = DS003061(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003078(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003078. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 72; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003078 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003078 DOI: https://doi.org/10.18112/openneuro.ds003078.v1.0.0
Examples
>>> from eegdash.dataset import DS003078 >>> dataset = DS003078(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003082(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003082. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 82; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003082 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003082
Examples
>>> from eegdash.dataset import DS003082 >>> dataset = DS003082(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003104. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003104 DOI: https://doi.org/10.18112/openneuro.ds003104.v1.0.0
Examples
>>> from eegdash.dataset import DS003104 >>> dataset = DS003104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003190(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003190. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 384; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003190 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003190 DOI: https://doi.org/10.18112/openneuro.ds003190.v1.0.1
Examples
>>> from eegdash.dataset import DS003190 >>> dataset = DS003190(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003194(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003194. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 29; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003194 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003194 DOI: https://doi.org/10.18112/openneuro.ds003194.v1.0.3
Examples
>>> from eegdash.dataset import DS003194 >>> dataset = DS003194(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003195(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003195. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 20; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003195 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003195 DOI: https://doi.org/10.18112/openneuro.ds003195.v1.0.3
Examples
>>> from eegdash.dataset import DS003195 >>> dataset = DS003195(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003343(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003343. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 59; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003343 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003343 DOI: https://doi.org/10.18112/openneuro.ds003343.v2.0.1
Examples
>>> from eegdash.dataset import DS003343 >>> dataset = DS003343(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003352(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003352. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 138; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003352 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003352 DOI: https://doi.org/10.18112/openneuro.ds003352.v1.0.0
Examples
>>> from eegdash.dataset import DS003352 >>> dataset = DS003352(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003374(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003374. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003374 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003374 DOI: https://doi.org/10.18112/openneuro.ds003374.v1.1.1
Examples
>>> from eegdash.dataset import DS003374 >>> dataset = DS003374(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003392(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003392. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 33; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003392 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003392 DOI: https://doi.org/10.18112/openneuro.ds003392.v1.0.4
Examples
>>> from eegdash.dataset import DS003392 >>> dataset = DS003392(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003420(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003420. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 92; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003420 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003420 DOI: https://doi.org/10.18112/openneuro.ds003420.v1.0.2
Examples
>>> from eegdash.dataset import DS003420 >>> dataset = DS003420(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003421(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003421. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003421 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003421 DOI: https://doi.org/10.18112/openneuro.ds003421.v1.0.2
Examples
>>> from eegdash.dataset import DS003421 >>> dataset = DS003421(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003458(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003458. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003458 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003458 DOI: https://doi.org/10.18112/openneuro.ds003458.v1.1.0
Examples
>>> from eegdash.dataset import DS003458 >>> dataset = DS003458(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003474(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003474. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 122; recordings: 122; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003474 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003474 DOI: https://doi.org/10.18112/openneuro.ds003474.v1.1.0
Examples
>>> from eegdash.dataset import DS003474 >>> dataset = DS003474(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003478(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003478. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 122; recordings: 243; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003478 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003478 DOI: https://doi.org/10.18112/openneuro.ds003478.v1.1.0
Examples
>>> from eegdash.dataset import DS003478 >>> dataset = DS003478(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003483(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003483. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 41; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003483 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003483 DOI: https://doi.org/10.18112/openneuro.ds003483.v1.0.2
Examples
>>> from eegdash.dataset import DS003483 >>> dataset = DS003483(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003490(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003490. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 75; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003490 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003490 DOI: https://doi.org/10.18112/openneuro.ds003490.v1.1.0
Examples
>>> from eegdash.dataset import DS003490 >>> dataset = DS003490(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003498(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003498. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 385; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003498 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003498 DOI: https://doi.org/10.18112/openneuro.ds003498.v1.0.1
Examples
>>> from eegdash.dataset import DS003498 >>> dataset = DS003498(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 37; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003505 DOI: https://doi.org/10.18112/openneuro.ds003505.v1.1.1
Examples
>>> from eegdash.dataset import DS003505 >>> dataset = DS003505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003506. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003506 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003506 DOI: https://doi.org/10.18112/openneuro.ds003506.v1.1.0
Examples
>>> from eegdash.dataset import DS003506 >>> dataset = DS003506(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003509. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003509 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003509 DOI: https://doi.org/10.18112/openneuro.ds003509.v1.1.0
Examples
>>> from eegdash.dataset import DS003509 >>> dataset = DS003509(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003516. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003516 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003516 DOI: https://doi.org/10.18112/openneuro.ds003516.v1.1.1
Examples
>>> from eegdash.dataset import DS003516 >>> dataset = DS003516(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003517(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003517. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003517 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003517 DOI: https://doi.org/10.18112/openneuro.ds003517.v1.1.0
Examples
>>> from eegdash.dataset import DS003517 >>> dataset = DS003517(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003518(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003518. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 137; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003518 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003518 DOI: https://doi.org/10.18112/openneuro.ds003518.v1.1.0
Examples
>>> from eegdash.dataset import DS003518 >>> dataset = DS003518(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003519. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 54; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003519 DOI: https://doi.org/10.18112/openneuro.ds003519.v1.1.0
Examples
>>> from eegdash.dataset import DS003519 >>> dataset = DS003519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003522(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003522. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 96; recordings: 200; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003522 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003522 DOI: https://doi.org/10.18112/openneuro.ds003522.v1.1.0
Examples
>>> from eegdash.dataset import DS003522 >>> dataset = DS003522(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003523(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003523. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 91; recordings: 221; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003523 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003523 DOI: https://doi.org/10.18112/openneuro.ds003523.v1.1.0
Examples
>>> from eegdash.dataset import DS003523 >>> dataset = DS003523(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003555. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003555 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003555 DOI: https://doi.org/10.18112/openneuro.ds003555.v1.0.1
Examples
>>> from eegdash.dataset import DS003555 >>> dataset = DS003555(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003568(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003568. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 3710; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003568 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003568 DOI: https://doi.org/10.18112/openneuro.ds003568.v1.0.4
Examples
>>> from eegdash.dataset import DS003568 >>> dataset = DS003568(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003570(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003570. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003570 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003570 DOI: https://doi.org/10.18112/openneuro.ds003570.v1.0.0
Examples
>>> from eegdash.dataset import DS003570 >>> dataset = DS003570(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003574. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003574 DOI: https://doi.org/10.18112/openneuro.ds003574.v1.0.2
Examples
>>> from eegdash.dataset import DS003574 >>> dataset = DS003574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003602. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 118; recordings: 699; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003602 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003602 DOI: https://doi.org/10.18112/openneuro.ds003602.v1.0.0
Examples
>>> from eegdash.dataset import DS003602 >>> dataset = DS003602(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003620(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003620. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 44; recordings: 100; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003620 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003620 DOI: https://doi.org/10.18112/openneuro.ds003620.v1.1.1
Examples
>>> from eegdash.dataset import DS003620 >>> dataset = DS003620(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003626. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003626 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003626 DOI: https://doi.org/10.18112/openneuro.ds003626.v2.0.0
Examples
>>> from eegdash.dataset import DS003626 >>> dataset = DS003626(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003633(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003633. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 96; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003633 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003633 DOI: https://doi.org/10.18112/openneuro.ds003633.v1.0.3
Examples
>>> from eegdash.dataset import DS003633 >>> dataset = DS003633(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003638(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003638. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 57; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003638 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003638 DOI: https://doi.org/10.18112/openneuro.ds003638.v1.0.0
Examples
>>> from eegdash.dataset import DS003638 >>> dataset = DS003638(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003645(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003645. Modality:eeg, meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 224; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003645 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003645 DOI: https://doi.org/10.18112/openneuro.ds003645.v2.0.2
Examples
>>> from eegdash.dataset import DS003645 >>> dataset = DS003645(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003655(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003655. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 156; recordings: 156; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003655 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003655 DOI: https://doi.org/10.18112/openneuro.ds003655.v1.0.0
Examples
>>> from eegdash.dataset import DS003655 >>> dataset = DS003655(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003670(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003670. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003670 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003670 DOI: https://doi.org/10.18112/openneuro.ds003670.v1.1.0
Examples
>>> from eegdash.dataset import DS003670 >>> dataset = DS003670(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003682(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003682. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 336; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003682 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003682 DOI: https://doi.org/10.18112/openneuro.ds003682.v1.0.0
Examples
>>> from eegdash.dataset import DS003682 >>> dataset = DS003682(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003688(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003688. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 107; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003688 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003688 DOI: https://doi.org/10.18112/openneuro.ds003688.v1.0.7
Examples
>>> from eegdash.dataset import DS003688 >>> dataset = DS003688(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003690(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003690. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 75; recordings: 375; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003690 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003690 DOI: https://doi.org/10.18112/openneuro.ds003690.v1.0.0
Examples
>>> from eegdash.dataset import DS003690 >>> dataset = DS003690(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003694(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003694. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 132; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003694 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003694 DOI: https://doi.org/10.18112/openneuro.ds003694.v1.0.0
Examples
>>> from eegdash.dataset import DS003694 >>> dataset = DS003694(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003702(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003702. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003702 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003702 DOI: https://doi.org/10.18112/openneuro.ds003702.v1.0.1
Examples
>>> from eegdash.dataset import DS003702 >>> dataset = DS003702(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003703(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003703. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 102; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003703 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003703 DOI: https://doi.org/10.18112/openneuro.ds003703.v1.0.0
Examples
>>> from eegdash.dataset import DS003703 >>> dataset = DS003703(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003708(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003708. Modality:ieeg; Experiment type:Unknown; Subject type:connectivity. Subjects: 2; recordings: 281; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003708 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003708 DOI: https://doi.org/10.18112/openneuro.ds003708.v1.0.4
Examples
>>> from eegdash.dataset import DS003708 >>> dataset = DS003708(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003710(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003710. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003710 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003710 DOI: https://doi.org/10.18112/openneuro.ds003710.v1.0.2
Examples
>>> from eegdash.dataset import DS003710 >>> dataset = DS003710(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003739(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003739. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 120; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003739 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003739 DOI: https://doi.org/10.18112/openneuro.ds003739.v1.0.2
Examples
>>> from eegdash.dataset import DS003739 >>> dataset = DS003739(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003751(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003751. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 38; recordings: 38; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003751 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003751 DOI: https://doi.org/10.18112/openneuro.ds003751.v1.0.2
Examples
>>> from eegdash.dataset import DS003751 >>> dataset = DS003751(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003753(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003753. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003753 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003753 DOI: https://doi.org/10.18112/openneuro.ds003753.v1.1.0
Examples
>>> from eegdash.dataset import DS003753 >>> dataset = DS003753(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003766(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003766. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 124; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003766 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003766 DOI: https://doi.org/10.18112/openneuro.ds003766.v2.0.3
Examples
>>> from eegdash.dataset import DS003766 >>> dataset = DS003766(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003768(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003768. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 255; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003768 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003768 DOI: https://doi.org/10.18112/openneuro.ds003768.v1.0.0
Examples
>>> from eegdash.dataset import DS003768 >>> dataset = DS003768(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003774(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003774. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003774 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003774 DOI: https://doi.org/10.18112/openneuro.ds003774.v1.0.0
Examples
>>> from eegdash.dataset import DS003774 >>> dataset = DS003774(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003775(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003775. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 111; recordings: 153; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003775 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003775 DOI: https://doi.org/10.18112/openneuro.ds003775.v1.2.1
Examples
>>> from eegdash.dataset import DS003775 >>> dataset = DS003775(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003800(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003800. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 24; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003800 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003800 DOI: https://doi.org/10.18112/openneuro.ds003800.v1.0.0
Examples
>>> from eegdash.dataset import DS003800 >>> dataset = DS003800(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003801(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003801. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003801 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003801 DOI: https://doi.org/10.18112/openneuro.ds003801.v1.0.0
Examples
>>> from eegdash.dataset import DS003801 >>> dataset = DS003801(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003805(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003805. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003805 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003805 DOI: https://doi.org/10.18112/openneuro.ds003805.v1.0.0
Examples
>>> from eegdash.dataset import DS003805 >>> dataset = DS003805(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003810. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003810 DOI: https://doi.org/10.18112/openneuro.ds003810.v2.0.2
Examples
>>> from eegdash.dataset import DS003810 >>> dataset = DS003810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003822(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003822. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003822 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003822 DOI: https://doi.org/10.18112/openneuro.ds003822.v1.1.0
Examples
>>> from eegdash.dataset import DS003822 >>> dataset = DS003822(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003825(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003825. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003825 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003825 DOI: https://doi.org/10.18112/openneuro.ds003825.v1.1.0
Examples
>>> from eegdash.dataset import DS003825 >>> dataset = DS003825(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003838(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003838. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 65; recordings: 130; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003838 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003838 DOI: https://doi.org/10.18112/openneuro.ds003838.v1.0.6
Examples
>>> from eegdash.dataset import DS003838 >>> dataset = DS003838(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003844. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 38; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003844 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003844 DOI: https://doi.org/10.18112/openneuro.ds003844.v1.0.1
Examples
>>> from eegdash.dataset import DS003844 >>> dataset = DS003844(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003846(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003846. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003846 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003846 DOI: https://doi.org/10.18112/openneuro.ds003846.v2.0.2
Examples
>>> from eegdash.dataset import DS003846 >>> dataset = DS003846(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003848(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003848. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 22; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003848 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003848 DOI: https://doi.org/10.18112/openneuro.ds003848.v1.0.3
Examples
>>> from eegdash.dataset import DS003848 >>> dataset = DS003848(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003876. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003876 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003876 DOI: https://doi.org/10.18112/openneuro.ds003876.v1.0.2
Examples
>>> from eegdash.dataset import DS003876 >>> dataset = DS003876(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003885(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003885. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003885 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003885 DOI: https://doi.org/10.18112/openneuro.ds003885.v1.0.7
Examples
>>> from eegdash.dataset import DS003885 >>> dataset = DS003885(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003887(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003887. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003887 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003887 DOI: https://doi.org/10.18112/openneuro.ds003887.v1.2.2
Examples
>>> from eegdash.dataset import DS003887 >>> dataset = DS003887(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003922(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003922. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 164; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003922 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003922 DOI: https://doi.org/10.18112/openneuro.ds003922.v1.0.1
Examples
>>> from eegdash.dataset import DS003922 >>> dataset = DS003922(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003944(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003944. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 82; recordings: 82; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003944 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003944 DOI: https://doi.org/10.18112/openneuro.ds003944.v1.0.1
Examples
>>> from eegdash.dataset import DS003944 >>> dataset = DS003944(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003947(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003947. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 61; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003947 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003947 DOI: https://doi.org/10.18112/openneuro.ds003947.v1.0.1
Examples
>>> from eegdash.dataset import DS003947 >>> dataset = DS003947(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003969(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003969. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 98; recordings: 392; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003969 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003969 DOI: https://doi.org/10.18112/openneuro.ds003969.v1.0.0
Examples
>>> from eegdash.dataset import DS003969 >>> dataset = DS003969(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS003987(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003987. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 69; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003987 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003987 DOI: https://doi.org/10.18112/openneuro.ds003987.v1.0.0
Examples
>>> from eegdash.dataset import DS003987 >>> dataset = DS003987(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004000(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004000. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 86; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004000 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004000 DOI: https://doi.org/10.18112/openneuro.ds004000.v1.0.0
Examples
>>> from eegdash.dataset import DS004000 >>> dataset = DS004000(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004010(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004010. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004010 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004010 DOI: https://doi.org/10.18112/openneuro.ds004010.v1.0.0
Examples
>>> from eegdash.dataset import DS004010 >>> dataset = DS004010(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004011(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004011. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 132; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004011 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004011 DOI: https://doi.org/10.18112/openneuro.ds004011.v1.0.3
Examples
>>> from eegdash.dataset import DS004011 >>> dataset = DS004011(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004012(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004012. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 294; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004012 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004012 DOI: https://doi.org/10.18112/openneuro.ds004012.v1.0.0
Examples
>>> from eegdash.dataset import DS004012 >>> dataset = DS004012(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004015(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004015. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004015 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004015 DOI: https://doi.org/10.18112/openneuro.ds004015.v1.0.2
Examples
>>> from eegdash.dataset import DS004015 >>> dataset = DS004015(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004017(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004017. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 63; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004017 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004017 DOI: https://doi.org/10.18112/openneuro.ds004017.v1.0.3
Examples
>>> from eegdash.dataset import DS004017 >>> dataset = DS004017(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004018(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004018. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004018 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004018 DOI: https://doi.org/10.18112/openneuro.ds004018.v2.0.0
Examples
>>> from eegdash.dataset import DS004018 >>> dataset = DS004018(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004019(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004019. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004019 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004019 DOI: https://doi.org/10.18112/openneuro.ds004019.v1.0.0
Examples
>>> from eegdash.dataset import DS004019 >>> dataset = DS004019(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004022(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004022. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004022 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004022 DOI: https://doi.org/10.18112/openneuro.ds004022.v1.0.0
Examples
>>> from eegdash.dataset import DS004022 >>> dataset = DS004022(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004024(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004024. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 497; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004024 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004024 DOI: https://doi.org/10.18112/openneuro.ds004024.v1.0.1
Examples
>>> from eegdash.dataset import DS004024 >>> dataset = DS004024(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004033(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004033. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 36; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004033 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004033 DOI: https://doi.org/10.18112/openneuro.ds004033.v1.0.0
Examples
>>> from eegdash.dataset import DS004033 >>> dataset = DS004033(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004040(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004040. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004040 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004040 DOI: https://doi.org/10.18112/openneuro.ds004040.v1.0.0
Examples
>>> from eegdash.dataset import DS004040 >>> dataset = DS004040(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004043(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004043. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004043 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004043 DOI: https://doi.org/10.18112/openneuro.ds004043.v1.1.0
Examples
>>> from eegdash.dataset import DS004043 >>> dataset = DS004043(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004067(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004067. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 80; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004067 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004067 DOI: https://doi.org/10.18112/openneuro.ds004067.v1.0.1
Examples
>>> from eegdash.dataset import DS004067 >>> dataset = DS004067(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004075(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004075. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 116; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004075 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004075 DOI: https://doi.org/10.18112/openneuro.ds004075.v1.0.0
Examples
>>> from eegdash.dataset import DS004075 >>> dataset = DS004075(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004078(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004078. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 720; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004078 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004078 DOI: https://doi.org/10.18112/openneuro.ds004078.v1.0.4
Examples
>>> from eegdash.dataset import DS004078 >>> dataset = DS004078(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004080(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004080. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 74; recordings: 117; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004080 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004080 DOI: https://doi.org/10.18112/openneuro.ds004080.v1.2.4
Examples
>>> from eegdash.dataset import DS004080 >>> dataset = DS004080(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004100(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004100. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 319; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004100 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004100 DOI: https://doi.org/10.18112/openneuro.ds004100.v1.1.3
Examples
>>> from eegdash.dataset import DS004100 >>> dataset = DS004100(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004105. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004105 DOI: https://doi.org/10.18112/openneuro.ds004105.v1.0.0
Examples
>>> from eegdash.dataset import DS004105 >>> dataset = DS004105(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004106. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004106 DOI: https://doi.org/10.18112/openneuro.ds004106.v1.0.0
Examples
>>> from eegdash.dataset import DS004106 >>> dataset = DS004106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004107. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 89; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004107 DOI: https://doi.org/10.18112/openneuro.ds004107.v1.0.0
Examples
>>> from eegdash.dataset import DS004107 >>> dataset = DS004107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004117(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004117. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 85; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004117 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004117 DOI: https://doi.org/10.18112/openneuro.ds004117.v1.0.1
Examples
>>> from eegdash.dataset import DS004117 >>> dataset = DS004117(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004118(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004118. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 156; recordings: 247; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004118 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004118 DOI: https://doi.org/10.18112/openneuro.ds004118.v1.0.1
Examples
>>> from eegdash.dataset import DS004118 >>> dataset = DS004118(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004119(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004119. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004119 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004119 DOI: https://doi.org/10.18112/openneuro.ds004119.v1.0.0
Examples
>>> from eegdash.dataset import DS004119 >>> dataset = DS004119(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004120(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004120. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 109; recordings: 131; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004120 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004120 DOI: https://doi.org/10.18112/openneuro.ds004120.v1.0.0
Examples
>>> from eegdash.dataset import DS004120 >>> dataset = DS004120(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004121(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004121. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004121 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004121 DOI: https://doi.org/10.18112/openneuro.ds004121.v1.0.0
Examples
>>> from eegdash.dataset import DS004121 >>> dataset = DS004121(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004122(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004122. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 63; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004122 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004122 DOI: https://doi.org/10.18112/openneuro.ds004122.v1.0.0
Examples
>>> from eegdash.dataset import DS004122 >>> dataset = DS004122(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004123(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004123. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004123 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004123 DOI: https://doi.org/10.18112/openneuro.ds004123.v1.0.0
Examples
>>> from eegdash.dataset import DS004123 >>> dataset = DS004123(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004127(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004127. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 73; tasks: 11.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004127 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004127 DOI: https://doi.org/10.18112/openneuro.ds004127.v3.0.0
Examples
>>> from eegdash.dataset import DS004127 >>> dataset = DS004127(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004147(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004147. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 12; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004147 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004147 DOI: https://doi.org/10.18112/openneuro.ds004147.v1.0.2
Examples
>>> from eegdash.dataset import DS004147 >>> dataset = DS004147(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004148(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004148. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 900; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004148 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004148 DOI: https://doi.org/10.18112/openneuro.ds004148.v1.0.0
Examples
>>> from eegdash.dataset import DS004148 >>> dataset = DS004148(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004151(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004151. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 57; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004151 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004151 DOI: https://doi.org/10.18112/openneuro.ds004151.v1.0.0
Examples
>>> from eegdash.dataset import DS004151 >>> dataset = DS004151(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004152(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004152. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004152 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004152 DOI: https://doi.org/10.18112/openneuro.ds004152.v1.1.2
Examples
>>> from eegdash.dataset import DS004152 >>> dataset = DS004152(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004166(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004166. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 213; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004166 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004166 DOI: https://doi.org/10.18112/openneuro.ds004166.v1.0.0
Examples
>>> from eegdash.dataset import DS004166 >>> dataset = DS004166(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004194(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004194. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 209; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004194 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004194 DOI: https://doi.org/10.18112/openneuro.ds004194.v3.0.0
Examples
>>> from eegdash.dataset import DS004194 >>> dataset = DS004194(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004196(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004196. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 4; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004196 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004196 DOI: https://doi.org/10.18112/openneuro.ds004196.v2.0.2
Examples
>>> from eegdash.dataset import DS004196 >>> dataset = DS004196(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004200(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004200. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004200 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004200 DOI: https://doi.org/10.18112/openneuro.ds004200.v1.0.1
Examples
>>> from eegdash.dataset import DS004200 >>> dataset = DS004200(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004212(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004212. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 500; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004212 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004212 DOI: https://doi.org/10.18112/openneuro.ds004212.v3.0.0
Examples
>>> from eegdash.dataset import DS004212 >>> dataset = DS004212(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004229(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004229. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004229 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004229 DOI: https://doi.org/10.18112/openneuro.ds004229.v1.0.3
Examples
>>> from eegdash.dataset import DS004229 >>> dataset = DS004229(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004252(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004252. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004252 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004252 DOI: https://doi.org/10.18112/openneuro.ds004252.v1.0.2
Examples
>>> from eegdash.dataset import DS004252 >>> dataset = DS004252(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004256(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004256. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004256 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004256 DOI: https://doi.org/10.18112/openneuro.ds004256.v1.0.5
Examples
>>> from eegdash.dataset import DS004256 >>> dataset = DS004256(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004262. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004262 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004262 DOI: https://doi.org/10.18112/openneuro.ds004262.v1.0.0
Examples
>>> from eegdash.dataset import DS004262 >>> dataset = DS004262(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004264(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004264. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004264 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004264 DOI: https://doi.org/10.18112/openneuro.ds004264.v1.1.0
Examples
>>> from eegdash.dataset import DS004264 >>> dataset = DS004264(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004276(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004276. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004276 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004276 DOI: https://doi.org/10.18112/openneuro.ds004276.v1.0.0
Examples
>>> from eegdash.dataset import DS004276 >>> dataset = DS004276(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004278(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004278. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 876; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004278 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004278 DOI: https://doi.org/10.18112/openneuro.ds004278.v1.0.1
Examples
>>> from eegdash.dataset import DS004278 >>> dataset = DS004278(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004279(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004279. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004279 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004279 DOI: https://doi.org/10.18112/openneuro.ds004279.v1.1.2
Examples
>>> from eegdash.dataset import DS004279 >>> dataset = DS004279(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004284(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004284. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004284 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004284 DOI: https://doi.org/10.18112/openneuro.ds004284.v1.0.0
Examples
>>> from eegdash.dataset import DS004284 >>> dataset = DS004284(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004295(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004295. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004295 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004295 DOI: https://doi.org/10.18112/openneuro.ds004295.v1.0.0
Examples
>>> from eegdash.dataset import DS004295 >>> dataset = DS004295(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004306(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004306. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004306 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004306 DOI: https://doi.org/10.18112/openneuro.ds004306.v1.0.2
Examples
>>> from eegdash.dataset import DS004306 >>> dataset = DS004306(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004315(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004315. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004315 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004315 DOI: https://doi.org/10.18112/openneuro.ds004315.v1.0.0
Examples
>>> from eegdash.dataset import DS004315 >>> dataset = DS004315(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004317(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004317. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004317 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004317 DOI: https://doi.org/10.18112/openneuro.ds004317.v1.0.3
Examples
>>> from eegdash.dataset import DS004317 >>> dataset = DS004317(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004324(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004324. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004324 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004324 DOI: https://doi.org/10.18112/openneuro.ds004324.v1.0.0
Examples
>>> from eegdash.dataset import DS004324 >>> dataset = DS004324(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004330(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004330. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 270; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004330 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004330 DOI: https://doi.org/10.18112/openneuro.ds004330.v1.0.0
Examples
>>> from eegdash.dataset import DS004330 >>> dataset = DS004330(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004346(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004346. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004346 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004346 DOI: https://doi.org/10.18112/openneuro.ds004346.v1.0.8
Examples
>>> from eegdash.dataset import DS004346 >>> dataset = DS004346(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004347(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004347. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004347 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004347 DOI: https://doi.org/10.18112/openneuro.ds004347.v1.0.0
Examples
>>> from eegdash.dataset import DS004347 >>> dataset = DS004347(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004348(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004348. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 18; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004348 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004348 DOI: https://doi.org/10.18112/openneuro.ds004348.v1.0.5
Examples
>>> from eegdash.dataset import DS004348 >>> dataset = DS004348(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004350(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004350. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 240; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004350 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004350 DOI: https://doi.org/10.18112/openneuro.ds004350.v2.0.0
Examples
>>> from eegdash.dataset import DS004350 >>> dataset = DS004350(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004356(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004356. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004356 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004356 DOI: https://doi.org/10.18112/openneuro.ds004356.v2.2.1
Examples
>>> from eegdash.dataset import DS004356 >>> dataset = DS004356(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004357(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004357. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004357 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004357 DOI: https://doi.org/10.18112/openneuro.ds004357.v1.0.1
Examples
>>> from eegdash.dataset import DS004357 >>> dataset = DS004357(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004362(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004362. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 109; recordings: 1526; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004362 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004362 DOI: https://doi.org/10.18112/openneuro.ds004362.v1.0.0
Examples
>>> from eegdash.dataset import DS004362 >>> dataset = DS004362(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004367(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004367. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004367 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004367 DOI: https://doi.org/10.18112/openneuro.ds004367.v1.0.2
Examples
>>> from eegdash.dataset import DS004367 >>> dataset = DS004367(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004368(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004368. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004368 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004368 DOI: https://doi.org/10.18112/openneuro.ds004368.v1.0.2
Examples
>>> from eegdash.dataset import DS004368 >>> dataset = DS004368(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004369(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004369. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004369 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004369 DOI: https://doi.org/10.18112/openneuro.ds004369.v1.0.1
Examples
>>> from eegdash.dataset import DS004369 >>> dataset = DS004369(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004370(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004370. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 15; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004370 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004370 DOI: https://doi.org/10.18112/openneuro.ds004370.v1.0.2
Examples
>>> from eegdash.dataset import DS004370 >>> dataset = DS004370(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004381(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004381. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 437; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004381 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004381 DOI: https://doi.org/10.18112/openneuro.ds004381.v1.0.2
Examples
>>> from eegdash.dataset import DS004381 >>> dataset = DS004381(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004388(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004388. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 399; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004388 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004388 DOI: https://doi.org/10.18112/openneuro.ds004388.v1.0.0
Examples
>>> from eegdash.dataset import DS004388 >>> dataset = DS004388(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004389(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004389. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 260; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004389 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004389 DOI: https://doi.org/10.18112/openneuro.ds004389.v1.0.0
Examples
>>> from eegdash.dataset import DS004389 >>> dataset = DS004389(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004395(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004395. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 364; recordings: 6483; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004395 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004395 DOI: https://doi.org/10.18112/openneuro.ds004395.v2.0.0
Examples
>>> from eegdash.dataset import DS004395 >>> dataset = DS004395(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004398(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004398. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 20; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004398 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004398
Examples
>>> from eegdash.dataset import DS004398 >>> dataset = DS004398(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004408(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004408. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 380; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004408 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004408 DOI: https://doi.org/10.18112/openneuro.ds004408.v1.0.8
Examples
>>> from eegdash.dataset import DS004408 >>> dataset = DS004408(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004444(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004444. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 465; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004444 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004444 DOI: https://doi.org/10.18112/openneuro.ds004444.v1.0.1
Examples
>>> from eegdash.dataset import DS004444 >>> dataset = DS004444(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004446(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004446. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 237; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004446 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004446 DOI: https://doi.org/10.18112/openneuro.ds004446.v1.0.1
Examples
>>> from eegdash.dataset import DS004446 >>> dataset = DS004446(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004447(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004447. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 418; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004447 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004447 DOI: https://doi.org/10.18112/openneuro.ds004447.v1.0.1
Examples
>>> from eegdash.dataset import DS004447 >>> dataset = DS004447(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004448(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004448. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 280; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004448 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004448 DOI: https://doi.org/10.18112/openneuro.ds004448.v1.0.2
Examples
>>> from eegdash.dataset import DS004448 >>> dataset = DS004448(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004457(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004457. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 2801; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004457 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004457 DOI: https://doi.org/10.18112/openneuro.ds004457.v1.0.2
Examples
>>> from eegdash.dataset import DS004457 >>> dataset = DS004457(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004460(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004460. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004460 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004460 DOI: https://doi.org/10.18112/openneuro.ds004460.v1.1.0
Examples
>>> from eegdash.dataset import DS004460 >>> dataset = DS004460(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004473(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004473. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004473 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004473 DOI: https://doi.org/10.18112/openneuro.ds004473.v1.0.1
Examples
>>> from eegdash.dataset import DS004473 >>> dataset = DS004473(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004475(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004475. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004475 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004475 DOI: https://doi.org/10.18112/openneuro.ds004475.v1.0.3
Examples
>>> from eegdash.dataset import DS004475 >>> dataset = DS004475(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004477(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004477. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004477 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004477 DOI: https://doi.org/10.18112/openneuro.ds004477.v1.0.2
Examples
>>> from eegdash.dataset import DS004477 >>> dataset = DS004477(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004483(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004483. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 282; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004483 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004483 DOI: https://doi.org/10.18112/openneuro.ds004483.v1.0.0
Examples
>>> from eegdash.dataset import DS004483 >>> dataset = DS004483(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004502(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004502. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004502 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004502 DOI: https://doi.org/10.18112/openneuro.ds004502.v1.0.1
Examples
>>> from eegdash.dataset import DS004502 >>> dataset = DS004502(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004504(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004504. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 88; recordings: 88; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004504 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004504 DOI: https://doi.org/10.18112/openneuro.ds004504.v1.0.8
Examples
>>> from eegdash.dataset import DS004504 >>> dataset = DS004504(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004505 DOI: https://doi.org/10.18112/openneuro.ds004505.v1.0.4
Examples
>>> from eegdash.dataset import DS004505 >>> dataset = DS004505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004511(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004511. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 45; recordings: 134; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004511 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004511 DOI: https://doi.org/10.18112/openneuro.ds004511.v1.0.2
Examples
>>> from eegdash.dataset import DS004511 >>> dataset = DS004511(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004514(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004514. Modality:eeg, fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 24; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004514 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004514 DOI: https://doi.org/10.18112/openneuro.ds004514.v1.1.2
Examples
>>> from eegdash.dataset import DS004514 >>> dataset = DS004514(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004515. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 54; recordings: 54; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004515 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004515 DOI: https://doi.org/10.18112/openneuro.ds004515.v1.0.0
Examples
>>> from eegdash.dataset import DS004515 >>> dataset = DS004515(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004517(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004517. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 7; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004517 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004517 DOI: https://doi.org/10.18112/openneuro.ds004517.v1.0.2
Examples
>>> from eegdash.dataset import DS004517 >>> dataset = DS004517(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004519. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004519 DOI: https://doi.org/10.18112/openneuro.ds004519.v1.0.1
Examples
>>> from eegdash.dataset import DS004519 >>> dataset = DS004519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004520. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 33; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004520 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004520 DOI: https://doi.org/10.18112/openneuro.ds004520.v1.0.1
Examples
>>> from eegdash.dataset import DS004520 >>> dataset = DS004520(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004521(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004521. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004521 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004521 DOI: https://doi.org/10.18112/openneuro.ds004521.v1.0.1
Examples
>>> from eegdash.dataset import DS004521 >>> dataset = DS004521(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004532(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004532. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 137; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004532 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004532 DOI: https://doi.org/10.18112/openneuro.ds004532.v1.2.0
Examples
>>> from eegdash.dataset import DS004532 >>> dataset = DS004532(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004551(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004551. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 114; recordings: 125; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004551 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004551 DOI: https://doi.org/10.18112/openneuro.ds004551.v1.0.6
Examples
>>> from eegdash.dataset import DS004551 >>> dataset = DS004551(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004554(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004554. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004554 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004554 DOI: https://doi.org/10.18112/openneuro.ds004554.v1.0.4
Examples
>>> from eegdash.dataset import DS004554 >>> dataset = DS004554(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004561(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004561. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004561 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004561 DOI: https://doi.org/10.18112/openneuro.ds004561.v1.0.0
Examples
>>> from eegdash.dataset import DS004561 >>> dataset = DS004561(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004563(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004563. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 119; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004563 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004563 DOI: https://doi.org/10.18112/openneuro.ds004563.v1.0.1
Examples
>>> from eegdash.dataset import DS004563 >>> dataset = DS004563(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004572(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004572. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 516; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004572 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004572 DOI: https://doi.org/10.18112/openneuro.ds004572.v1.3.1
Examples
>>> from eegdash.dataset import DS004572 >>> dataset = DS004572(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004574. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 146; recordings: 146; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004574 DOI: https://doi.org/10.18112/openneuro.ds004574.v1.0.0
Examples
>>> from eegdash.dataset import DS004574 >>> dataset = DS004574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004577(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004577. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 103; recordings: 130; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004577 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004577 DOI: https://doi.org/10.18112/openneuro.ds004577.v1.0.1
Examples
>>> from eegdash.dataset import DS004577 >>> dataset = DS004577(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004579(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004579. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 139; recordings: 139; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004579 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004579 DOI: https://doi.org/10.18112/openneuro.ds004579.v1.0.0
Examples
>>> from eegdash.dataset import DS004579 >>> dataset = DS004579(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004580(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004580. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 147; recordings: 147; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004580 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004580 DOI: https://doi.org/10.18112/openneuro.ds004580.v1.0.0
Examples
>>> from eegdash.dataset import DS004580 >>> dataset = DS004580(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004582(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004582. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 73; recordings: 73; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004582 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004582 DOI: https://doi.org/10.18112/openneuro.ds004582.v1.0.0
Examples
>>> from eegdash.dataset import DS004582 >>> dataset = DS004582(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004584(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004584. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 149; recordings: 149; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004584 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004584 DOI: https://doi.org/10.18112/openneuro.ds004584.v1.0.0
Examples
>>> from eegdash.dataset import DS004584 >>> dataset = DS004584(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004587(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004587. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 103; recordings: 114; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004587 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004587 DOI: https://doi.org/10.18112/openneuro.ds004587.v1.0.0
Examples
>>> from eegdash.dataset import DS004587 >>> dataset = DS004587(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004588(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004588. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004588 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004588 DOI: https://doi.org/10.18112/openneuro.ds004588.v1.2.0
Examples
>>> from eegdash.dataset import DS004588 >>> dataset = DS004588(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004595(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004595. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004595 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004595 DOI: https://doi.org/10.18112/openneuro.ds004595.v1.0.0
Examples
>>> from eegdash.dataset import DS004595 >>> dataset = DS004595(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004598(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004598. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004598 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004598 DOI: https://doi.org/10.18112/openneuro.ds004598.v1.0.0
Examples
>>> from eegdash.dataset import DS004598 >>> dataset = DS004598(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004602. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 182; recordings: 546; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004602 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004602 DOI: https://doi.org/10.18112/openneuro.ds004602.v1.0.1
Examples
>>> from eegdash.dataset import DS004602 >>> dataset = DS004602(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004603(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004603. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 37; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004603 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004603 DOI: https://doi.org/10.18112/openneuro.ds004603.v1.1.0
Examples
>>> from eegdash.dataset import DS004603 >>> dataset = DS004603(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004621(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004621. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 167; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004621 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004621 DOI: https://doi.org/10.18112/openneuro.ds004621.v1.0.4
Examples
>>> from eegdash.dataset import DS004621 >>> dataset = DS004621(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004624(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004624. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 66425; tasks: 32.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004624 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004624 DOI: https://doi.org/10.18112/openneuro.ds004624.v2.0.0
Examples
>>> from eegdash.dataset import DS004624 >>> dataset = DS004624(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004625(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004625. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 543; tasks: 9.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004625 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004625 DOI: https://doi.org/10.18112/openneuro.ds004625.v1.0.2
Examples
>>> from eegdash.dataset import DS004625 >>> dataset = DS004625(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004626. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004626 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004626 DOI: https://doi.org/10.18112/openneuro.ds004626.v1.0.2
Examples
>>> from eegdash.dataset import DS004626 >>> dataset = DS004626(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004635(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004635. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004635 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004635 DOI: https://doi.org/10.18112/openneuro.ds004635.v3.1.0
Examples
>>> from eegdash.dataset import DS004635 >>> dataset = DS004635(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004642(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004642. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 10; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004642 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004642 DOI: https://doi.org/10.18112/openneuro.ds004642.v1.0.1
Examples
>>> from eegdash.dataset import DS004642 >>> dataset = DS004642(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004657(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004657. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 119; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004657 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004657 DOI: https://doi.org/10.18112/openneuro.ds004657.v1.0.3
Examples
>>> from eegdash.dataset import DS004657 >>> dataset = DS004657(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004660(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004660. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004660 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004660 DOI: https://doi.org/10.18112/openneuro.ds004660.v1.0.2
Examples
>>> from eegdash.dataset import DS004660 >>> dataset = DS004660(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004661(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004661. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004661 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004661 DOI: https://doi.org/10.18112/openneuro.ds004661.v1.1.0
Examples
>>> from eegdash.dataset import DS004661 >>> dataset = DS004661(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004696(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004696. Modality:ieeg; Experiment type:Unknown; Subject type:Single pulse electrical stimulation, limbic circuitry. Subjects: 10; recordings: 5243; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004696 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004696 DOI: https://doi.org/10.18112/openneuro.ds004696.v1.0.1
Examples
>>> from eegdash.dataset import DS004696 >>> dataset = DS004696(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004703(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004703. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 11; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004703 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004703 DOI: https://doi.org/10.18112/openneuro.ds004703.v1.1.0
Examples
>>> from eegdash.dataset import DS004703 >>> dataset = DS004703(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004706(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004706. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 298; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004706 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004706 DOI: https://doi.org/10.18112/openneuro.ds004706.v1.0.0
Examples
>>> from eegdash.dataset import DS004706 >>> dataset = DS004706(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004718. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004718 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004718 DOI: https://doi.org/10.18112/openneuro.ds004718.v1.1.2
Examples
>>> from eegdash.dataset import DS004718 >>> dataset = DS004718(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004738(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004738. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 25; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004738 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004738 DOI: https://doi.org/10.18112/openneuro.ds004738.v1.0.1
Examples
>>> from eegdash.dataset import DS004738 >>> dataset = DS004738(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004745(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004745. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 6; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004745 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004745 DOI: https://doi.org/10.18112/openneuro.ds004745.v1.0.1
Examples
>>> from eegdash.dataset import DS004745 >>> dataset = DS004745(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004752. Modality:eeg, ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 136; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004752 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004752 DOI: https://doi.org/10.18112/openneuro.ds004752.v1.0.1
Examples
>>> from eegdash.dataset import DS004752 >>> dataset = DS004752(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004770(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004770. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004770 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004770 DOI: https://doi.org/10.18112/openneuro.ds004770.v1.0.0
Examples
>>> from eegdash.dataset import DS004770 >>> dataset = DS004770(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004771(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004771. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 61; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004771 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004771 DOI: https://doi.org/10.18112/openneuro.ds004771.v1.0.0
Examples
>>> from eegdash.dataset import DS004771 >>> dataset = DS004771(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004774(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004774. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004774 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004774 DOI: https://doi.org/10.18112/openneuro.ds004774.v1.0.0
Examples
>>> from eegdash.dataset import DS004774 >>> dataset = DS004774(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004784(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004784. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 6; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004784 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004784 DOI: https://doi.org/10.18112/openneuro.ds004784.v1.0.4
Examples
>>> from eegdash.dataset import DS004784 >>> dataset = DS004784(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004785. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004785 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004785 DOI: https://doi.org/10.18112/openneuro.ds004785.v1.0.1
Examples
>>> from eegdash.dataset import DS004785 >>> dataset = DS004785(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004789(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004789. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 273; recordings: 983; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004789 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004789 DOI: https://doi.org/10.18112/openneuro.ds004789.v3.1.0
Examples
>>> from eegdash.dataset import DS004789 >>> dataset = DS004789(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004796(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004796. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 79; recordings: 235; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004796 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004796 DOI: https://doi.org/10.18112/openneuro.ds004796.v1.1.0
Examples
>>> from eegdash.dataset import DS004796 >>> dataset = DS004796(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004802(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004802. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 79; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004802 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004802 DOI: https://doi.org/10.18112/openneuro.ds004802.v1.0.0
Examples
>>> from eegdash.dataset import DS004802 >>> dataset = DS004802(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004809(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004809. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 252; recordings: 889; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004809 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004809 DOI: https://doi.org/10.18112/openneuro.ds004809.v2.2.0
Examples
>>> from eegdash.dataset import DS004809 >>> dataset = DS004809(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004816(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004816. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004816 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004816 DOI: https://doi.org/10.18112/openneuro.ds004816.v1.0.0
Examples
>>> from eegdash.dataset import DS004816 >>> dataset = DS004816(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004817(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004817. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004817 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004817 DOI: https://doi.org/10.18112/openneuro.ds004817.v1.0.0
Examples
>>> from eegdash.dataset import DS004817 >>> dataset = DS004817(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004819(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004819. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004819 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004819 DOI: https://doi.org/10.18112/openneuro.ds004819.v1.0.0
Examples
>>> from eegdash.dataset import DS004819 >>> dataset = DS004819(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004830(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004830. Modality:fnirs; Experiment type:Unknown; Subject type:Spatial Attention Decoding, Auditory Neuroscience, Complex Scene Analysis, fNIRS, BCI, Machine Learning. Subjects: 13; recordings: 226; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004830 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004830 DOI: https://doi.org/10.18112/openneuro.ds004830.v1.0.1
Examples
>>> from eegdash.dataset import DS004830 >>> dataset = DS004830(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004837(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004837. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 106; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004837 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004837 DOI: https://doi.org/10.18112/openneuro.ds004837.v1.0.2
Examples
>>> from eegdash.dataset import DS004837 >>> dataset = DS004837(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004840(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004840. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 51; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004840 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004840 DOI: https://doi.org/10.18112/openneuro.ds004840.v1.0.1
Examples
>>> from eegdash.dataset import DS004840 >>> dataset = DS004840(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004841(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004841. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 147; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004841 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004841 DOI: https://doi.org/10.18112/openneuro.ds004841.v1.0.1
Examples
>>> from eegdash.dataset import DS004841 >>> dataset = DS004841(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004842(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004842. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 102; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004842 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004842 DOI: https://doi.org/10.18112/openneuro.ds004842.v1.0.0
Examples
>>> from eegdash.dataset import DS004842 >>> dataset = DS004842(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004843(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004843. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 92; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004843 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004843 DOI: https://doi.org/10.18112/openneuro.ds004843.v1.0.0
Examples
>>> from eegdash.dataset import DS004843 >>> dataset = DS004843(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004844. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 68; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004844 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004844 DOI: https://doi.org/10.18112/openneuro.ds004844.v1.0.0
Examples
>>> from eegdash.dataset import DS004844 >>> dataset = DS004844(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004849. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004849 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004849 DOI: https://doi.org/10.18112/openneuro.ds004849.v1.0.0
Examples
>>> from eegdash.dataset import DS004849 >>> dataset = DS004849(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004850(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004850. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004850 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004850 DOI: https://doi.org/10.18112/openneuro.ds004850.v1.0.0
Examples
>>> from eegdash.dataset import DS004850 >>> dataset = DS004850(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004851(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004851. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 66; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004851 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004851 DOI: https://doi.org/10.18112/openneuro.ds004851.v2.1.0
Examples
>>> from eegdash.dataset import DS004851 >>> dataset = DS004851(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004852(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004852. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004852 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004852 DOI: https://doi.org/10.18112/openneuro.ds004852.v1.0.0
Examples
>>> from eegdash.dataset import DS004852 >>> dataset = DS004852(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004853(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004853. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004853 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004853 DOI: https://doi.org/10.18112/openneuro.ds004853.v1.0.0
Examples
>>> from eegdash.dataset import DS004853 >>> dataset = DS004853(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004854(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004854. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004854 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004854 DOI: https://doi.org/10.18112/openneuro.ds004854.v1.0.0
Examples
>>> from eegdash.dataset import DS004854 >>> dataset = DS004854(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004855(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004855. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004855 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004855 DOI: https://doi.org/10.18112/openneuro.ds004855.v1.0.0
Examples
>>> from eegdash.dataset import DS004855 >>> dataset = DS004855(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004859(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004859. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004859 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004859 DOI: https://doi.org/10.18112/openneuro.ds004859.v1.0.0
Examples
>>> from eegdash.dataset import DS004859 >>> dataset = DS004859(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004860(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004860. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004860 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004860 DOI: https://doi.org/10.18112/openneuro.ds004860.v1.0.0
Examples
>>> from eegdash.dataset import DS004860 >>> dataset = DS004860(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004865(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004865. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 172; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004865 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004865 DOI: https://doi.org/10.18112/openneuro.ds004865.v2.0.1
Examples
>>> from eegdash.dataset import DS004865 >>> dataset = DS004865(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004883(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004883. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 172; recordings: 516; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004883 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004883 DOI: https://doi.org/10.18112/openneuro.ds004883.v1.0.0
Examples
>>> from eegdash.dataset import DS004883 >>> dataset = DS004883(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004902(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004902. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 218; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004902 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004902 DOI: https://doi.org/10.18112/openneuro.ds004902.v1.0.8
Examples
>>> from eegdash.dataset import DS004902 >>> dataset = DS004902(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004917(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004917. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004917 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004917 DOI: https://doi.org/10.18112/openneuro.ds004917.v1.0.1
Examples
>>> from eegdash.dataset import DS004917 >>> dataset = DS004917(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004929(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004929. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 233; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004929 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004929 DOI: https://doi.org/10.18112/openneuro.ds004929.v1.0.0
Examples
>>> from eegdash.dataset import DS004929 >>> dataset = DS004929(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004940(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004940. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 48; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004940 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004940 DOI: https://doi.org/10.18112/openneuro.ds004940.v1.0.1
Examples
>>> from eegdash.dataset import DS004940 >>> dataset = DS004940(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004942(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004942. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004942 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004942 DOI: https://doi.org/10.18112/openneuro.ds004942.v1.0.0
Examples
>>> from eegdash.dataset import DS004942 >>> dataset = DS004942(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004944(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004944. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 44; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004944 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004944 DOI: https://doi.org/10.18112/openneuro.ds004944.v1.1.0
Examples
>>> from eegdash.dataset import DS004944 >>> dataset = DS004944(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004951(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004951. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004951 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004951 DOI: https://doi.org/10.18112/openneuro.ds004951.v1.0.0
Examples
>>> from eegdash.dataset import DS004951 >>> dataset = DS004951(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004952(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004952. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 245; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004952 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004952 DOI: https://doi.org/10.18112/openneuro.ds004952.v1.2.2
Examples
>>> from eegdash.dataset import DS004952 >>> dataset = DS004952(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004973(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004973. Modality:fnirs; Experiment type:Unknown; Subject type:Highly automated driving vehicles. Subjects: 21; recordings: 1177; tasks: 12.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004973 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004973 DOI: https://doi.org/10.18112/openneuro.ds004973.v1.0.1
Examples
>>> from eegdash.dataset import DS004973 >>> dataset = DS004973(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004977(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004977. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 4479; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004977 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004977 DOI: https://doi.org/10.18112/openneuro.ds004977.v1.2.0
Examples
>>> from eegdash.dataset import DS004977 >>> dataset = DS004977(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004980(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004980. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004980 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004980 DOI: https://doi.org/10.18112/openneuro.ds004980.v1.0.0
Examples
>>> from eegdash.dataset import DS004980 >>> dataset = DS004980(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004993(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004993. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 3; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004993 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004993 DOI: https://doi.org/10.18112/openneuro.ds004993.v1.1.2
Examples
>>> from eegdash.dataset import DS004993 >>> dataset = DS004993(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004995(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004995. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004995 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004995 DOI: https://doi.org/10.18112/openneuro.ds004995.v1.0.2
Examples
>>> from eegdash.dataset import DS004995 >>> dataset = DS004995(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS004998(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004998. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 145; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004998 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004998 DOI: https://doi.org/10.18112/openneuro.ds004998.v1.2.2
Examples
>>> from eegdash.dataset import DS004998 >>> dataset = DS004998(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005007(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005007. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005007 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005007 DOI: https://doi.org/10.18112/openneuro.ds005007.v1.0.0
Examples
>>> from eegdash.dataset import DS005007 >>> dataset = DS005007(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005021(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005021. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005021 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005021 DOI: https://doi.org/10.18112/openneuro.ds005021.v1.2.1
Examples
>>> from eegdash.dataset import DS005021 >>> dataset = DS005021(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005028(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005028. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 105; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005028 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005028 DOI: https://doi.org/10.18112/openneuro.ds005028.v1.0.0
Examples
>>> from eegdash.dataset import DS005028 >>> dataset = DS005028(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005034. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 100; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005034 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005034 DOI: https://doi.org/10.18112/openneuro.ds005034.v1.0.1
Examples
>>> from eegdash.dataset import DS005034 >>> dataset = DS005034(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005048(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005048. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 35; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005048 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005048 DOI: https://doi.org/10.18112/openneuro.ds005048.v1.0.1
Examples
>>> from eegdash.dataset import DS005048 >>> dataset = DS005048(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005059(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005059. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 69; recordings: 282; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005059 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005059 DOI: https://doi.org/10.18112/openneuro.ds005059.v1.0.6
Examples
>>> from eegdash.dataset import DS005059 >>> dataset = DS005059(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005065(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005065. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 3397; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005065 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005065 DOI: https://doi.org/10.18112/openneuro.ds005065.v1.0.0
Examples
>>> from eegdash.dataset import DS005065 >>> dataset = DS005065(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005079(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005079. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 60; tasks: 15.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005079 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005079 DOI: https://doi.org/10.18112/openneuro.ds005079.v2.0.0
Examples
>>> from eegdash.dataset import DS005079 >>> dataset = DS005079(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005083(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005083. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 1357; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005083 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005083 DOI: https://doi.org/10.18112/openneuro.ds005083.v1.0.0
Examples
>>> from eegdash.dataset import DS005083 >>> dataset = DS005083(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005087(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005087. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 60; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005087 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005087 DOI: https://doi.org/10.18112/openneuro.ds005087.v1.0.1
Examples
>>> from eegdash.dataset import DS005087 >>> dataset = DS005087(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005089(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005089. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005089 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005089 DOI: https://doi.org/10.18112/openneuro.ds005089.v1.0.1
Examples
>>> from eegdash.dataset import DS005089 >>> dataset = DS005089(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005095. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005095 DOI: https://doi.org/10.18112/openneuro.ds005095.v1.0.1
Examples
>>> from eegdash.dataset import DS005095 >>> dataset = DS005095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005106. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005106 DOI: https://doi.org/10.18112/openneuro.ds005106.v1.5.0
Examples
>>> from eegdash.dataset import DS005106 >>> dataset = DS005106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005107. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 350; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005107 DOI: https://doi.org/10.18112/openneuro.ds005107.v2.0.0
Examples
>>> from eegdash.dataset import DS005107 >>> dataset = DS005107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005114(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005114. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 91; recordings: 223; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005114 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005114 DOI: https://doi.org/10.18112/openneuro.ds005114.v1.0.0
Examples
>>> from eegdash.dataset import DS005114 >>> dataset = DS005114(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005121(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005121. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005121 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005121 DOI: https://doi.org/10.18112/openneuro.ds005121.v1.0.2
Examples
>>> from eegdash.dataset import DS005121 >>> dataset = DS005121(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005131(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005131. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 58; recordings: 63; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005131 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005131 DOI: https://doi.org/10.18112/openneuro.ds005131.v1.0.1
Examples
>>> from eegdash.dataset import DS005131 >>> dataset = DS005131(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005169(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005169. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 112; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005169 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005169 DOI: https://doi.org/10.18112/openneuro.ds005169.v1.0.0
Examples
>>> from eegdash.dataset import DS005169 >>> dataset = DS005169(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005170(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005170. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 225; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005170 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005170 DOI: https://doi.org/10.18112/openneuro.ds005170.v1.1.2
Examples
>>> from eegdash.dataset import DS005170 >>> dataset = DS005170(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005178(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005178. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 140; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005178 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005178 DOI: https://doi.org/10.18112/openneuro.ds005178.v1.0.0
Examples
>>> from eegdash.dataset import DS005178 >>> dataset = DS005178(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005185(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005185. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 356; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005185 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005185 DOI: https://doi.org/10.18112/openneuro.ds005185.v1.0.2
Examples
>>> from eegdash.dataset import DS005185 >>> dataset = DS005185(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005189(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005189. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005189 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005189 DOI: https://doi.org/10.18112/openneuro.ds005189.v1.0.1
Examples
>>> from eegdash.dataset import DS005189 >>> dataset = DS005189(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005207(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005207. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005207 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005207 DOI: https://doi.org/10.18112/openneuro.ds005207.v1.0.0
Examples
>>> from eegdash.dataset import DS005207 >>> dataset = DS005207(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005241(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005241. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 117; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005241 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005241 DOI: https://doi.org/10.18112/openneuro.ds005241.v1.1.0
Examples
>>> from eegdash.dataset import DS005241 >>> dataset = DS005241(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005261(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005261. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 128; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005261 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005261 DOI: https://doi.org/10.18112/openneuro.ds005261.v3.0.0
Examples
>>> from eegdash.dataset import DS005261 >>> dataset = DS005261(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005262. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 186; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005262 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005262 DOI: https://doi.org/10.18112/openneuro.ds005262.v1.0.1
Examples
>>> from eegdash.dataset import DS005262 >>> dataset = DS005262(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005273(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005273. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 33; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005273 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005273 DOI: https://doi.org/10.18112/openneuro.ds005273.v1.0.0
Examples
>>> from eegdash.dataset import DS005273 >>> dataset = DS005273(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005274(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005274. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005274 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005274 DOI: https://doi.org/10.18112/openneuro.ds005274.v1.0.0
Examples
>>> from eegdash.dataset import DS005274 >>> dataset = DS005274(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005279(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005279. Modality:meg; Experiment type:Unknown; Subject type:Neurolingusitics. Subjects: 31; recordings: 1632; tasks: 54.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005279 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005279 DOI: https://doi.org/10.18112/openneuro.ds005279.v1.0.3
Examples
>>> from eegdash.dataset import DS005279 >>> dataset = DS005279(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005280(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005280. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 223; recordings: 669; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005280 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005280 DOI: https://doi.org/10.18112/openneuro.ds005280.v1.0.0
Examples
>>> from eegdash.dataset import DS005280 >>> dataset = DS005280(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005284(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005284. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005284 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005284 DOI: https://doi.org/10.18112/openneuro.ds005284.v1.0.0
Examples
>>> from eegdash.dataset import DS005284 >>> dataset = DS005284(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005285(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005285. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 116; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005285 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005285 DOI: https://doi.org/10.18112/openneuro.ds005285.v1.0.0
Examples
>>> from eegdash.dataset import DS005285 >>> dataset = DS005285(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005286(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005286. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005286 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005286 DOI: https://doi.org/10.18112/openneuro.ds005286.v1.0.0
Examples
>>> from eegdash.dataset import DS005286 >>> dataset = DS005286(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005289(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005289. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 195; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005289 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005289 DOI: https://doi.org/10.18112/openneuro.ds005289.v1.0.0
Examples
>>> from eegdash.dataset import DS005289 >>> dataset = DS005289(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005291(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005291. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 65; recordings: 65; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005291 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005291 DOI: https://doi.org/10.18112/openneuro.ds005291.v1.0.0
Examples
>>> from eegdash.dataset import DS005291 >>> dataset = DS005291(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005292(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005292. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 142; recordings: 426; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005292 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005292 DOI: https://doi.org/10.18112/openneuro.ds005292.v1.0.0
Examples
>>> from eegdash.dataset import DS005292 >>> dataset = DS005292(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005293(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005293. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 95; recordings: 570; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005293 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005293 DOI: https://doi.org/10.18112/openneuro.ds005293.v1.0.0
Examples
>>> from eegdash.dataset import DS005293 >>> dataset = DS005293(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005296(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005296. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005296 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005296 DOI: https://doi.org/10.18112/openneuro.ds005296.v1.0.0
Examples
>>> from eegdash.dataset import DS005296 >>> dataset = DS005296(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005305(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005305. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 165; recordings: 165; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005305 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005305 DOI: https://doi.org/10.18112/openneuro.ds005305.v1.0.1
Examples
>>> from eegdash.dataset import DS005305 >>> dataset = DS005305(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005307(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005307. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 73; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005307 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005307 DOI: https://doi.org/10.18112/openneuro.ds005307.v1.0.1
Examples
>>> from eegdash.dataset import DS005307 >>> dataset = DS005307(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005340(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005340. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005340 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005340 DOI: https://doi.org/10.18112/openneuro.ds005340.v1.0.4
Examples
>>> from eegdash.dataset import DS005340 >>> dataset = DS005340(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005342(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005342. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005342 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005342 DOI: https://doi.org/10.18112/openneuro.ds005342.v1.0.3
Examples
>>> from eegdash.dataset import DS005342 >>> dataset = DS005342(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005343(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005343. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 43; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005343 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005343 DOI: https://doi.org/10.18112/openneuro.ds005343.v1.0.0
Examples
>>> from eegdash.dataset import DS005343 >>> dataset = DS005343(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005345(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005345. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005345 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005345 DOI: https://doi.org/10.18112/openneuro.ds005345.v1.0.1
Examples
>>> from eegdash.dataset import DS005345 >>> dataset = DS005345(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005346(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005346. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 90; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005346 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005346 DOI: https://doi.org/10.18112/openneuro.ds005346.v1.0.5
Examples
>>> from eegdash.dataset import DS005346 >>> dataset = DS005346(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005356(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005356. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 85; recordings: 116; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005356 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005356 DOI: https://doi.org/10.18112/openneuro.ds005356.v1.5.0
Examples
>>> from eegdash.dataset import DS005356 >>> dataset = DS005356(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005363(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005363. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 43; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005363 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005363 DOI: https://doi.org/10.18112/openneuro.ds005363.v1.0.0
Examples
>>> from eegdash.dataset import DS005363 >>> dataset = DS005363(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005383(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005383. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 240; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005383 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005383 DOI: https://doi.org/10.18112/openneuro.ds005383.v1.0.0
Examples
>>> from eegdash.dataset import DS005383 >>> dataset = DS005383(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005385(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005385. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 608; recordings: 3264; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005385 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005385 DOI: https://doi.org/10.18112/openneuro.ds005385.v1.0.3
Examples
>>> from eegdash.dataset import DS005385 >>> dataset = DS005385(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005397(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005397. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005397 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005397 DOI: https://doi.org/10.18112/openneuro.ds005397.v1.0.4
Examples
>>> from eegdash.dataset import DS005397 >>> dataset = DS005397(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005398(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005398. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 185; recordings: 185; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005398 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005398 DOI: https://doi.org/10.18112/openneuro.ds005398.v1.0.1
Examples
>>> from eegdash.dataset import DS005398 >>> dataset = DS005398(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005403(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005403. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005403 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005403 DOI: https://doi.org/10.18112/openneuro.ds005403.v1.0.1
Examples
>>> from eegdash.dataset import DS005403 >>> dataset = DS005403(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005406(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005406. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005406 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005406 DOI: https://doi.org/10.18112/openneuro.ds005406.v1.0.0
Examples
>>> from eegdash.dataset import DS005406 >>> dataset = DS005406(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005407(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005407. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005407 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005407 DOI: https://doi.org/10.18112/openneuro.ds005407.v1.0.0
Examples
>>> from eegdash.dataset import DS005407 >>> dataset = DS005407(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005408(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005408. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005408 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005408 DOI: https://doi.org/10.18112/openneuro.ds005408.v1.0.0
Examples
>>> from eegdash.dataset import DS005408 >>> dataset = DS005408(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005410(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005410. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 81; recordings: 81; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005410 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005410 DOI: https://doi.org/10.18112/openneuro.ds005410.v1.0.1
Examples
>>> from eegdash.dataset import DS005410 >>> dataset = DS005410(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005411(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005411. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 193; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005411 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005411 DOI: https://doi.org/10.18112/openneuro.ds005411.v1.0.0
Examples
>>> from eegdash.dataset import DS005411 >>> dataset = DS005411(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005415(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005415. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 13; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005415 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005415 DOI: https://doi.org/10.18112/openneuro.ds005415.v1.0.0
Examples
>>> from eegdash.dataset import DS005415 >>> dataset = DS005415(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005416(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005416. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005416 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005416 DOI: https://doi.org/10.18112/openneuro.ds005416.v1.0.1
Examples
>>> from eegdash.dataset import DS005416 >>> dataset = DS005416(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005420(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005420. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 72; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005420 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005420 DOI: https://doi.org/10.18112/openneuro.ds005420.v1.0.0
Examples
>>> from eegdash.dataset import DS005420 >>> dataset = DS005420(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005429(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005429. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 61; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005429 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005429 DOI: https://doi.org/10.18112/openneuro.ds005429.v1.0.0
Examples
>>> from eegdash.dataset import DS005429 >>> dataset = DS005429(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005448(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005448. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005448 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005448 DOI: https://doi.org/10.18112/openneuro.ds005448.v1.0.0
Examples
>>> from eegdash.dataset import DS005448 >>> dataset = DS005448(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005473(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005473. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 58; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005473 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005473 DOI: https://doi.org/10.18112/openneuro.ds005473.v1.0.0
Examples
>>> from eegdash.dataset import DS005473 >>> dataset = DS005473(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005486(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005486. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 159; recordings: 445; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005486 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005486 DOI: https://doi.org/10.18112/openneuro.ds005486.v1.0.1
Examples
>>> from eegdash.dataset import DS005486 >>> dataset = DS005486(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005489(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005489. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 154; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005489 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005489 DOI: https://doi.org/10.18112/openneuro.ds005489.v1.0.3
Examples
>>> from eegdash.dataset import DS005489 >>> dataset = DS005489(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005491(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005491. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005491 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005491 DOI: https://doi.org/10.18112/openneuro.ds005491.v1.0.0
Examples
>>> from eegdash.dataset import DS005491 >>> dataset = DS005491(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005494(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005494. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005494 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005494 DOI: https://doi.org/10.18112/openneuro.ds005494.v1.0.1
Examples
>>> from eegdash.dataset import DS005494 >>> dataset = DS005494(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 136; recordings: 1342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005505 DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import DS005505 >>> dataset = DS005505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005506. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 150; recordings: 1405; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005506 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005506 DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import DS005506 >>> dataset = DS005506(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005507(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005507. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 184; recordings: 1812; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005507 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005507 DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import DS005507 >>> dataset = DS005507(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005508(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005508. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 324; recordings: 3342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005508 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005508 DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import DS005508 >>> dataset = DS005508(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005509. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 330; recordings: 3326; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005509 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005509 DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import DS005509 >>> dataset = DS005509(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005510(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005510. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 135; recordings: 1227; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005510 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005510 DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import DS005510 >>> dataset = DS005510(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005512(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005512. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 257; recordings: 2320; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005512 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005512 DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import DS005512 >>> dataset = DS005512(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005514(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005514. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 295; recordings: 2885; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005514 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005514 DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import DS005514 >>> dataset = DS005514(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005515. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 533; recordings: 2516; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005515 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005515 DOI: https://doi.org/10.18112/openneuro.ds005515.v1.0.1
Examples
>>> from eegdash.dataset import DS005515 >>> dataset = DS005515(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005516. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 430; recordings: 3397; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005516 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005516 DOI: https://doi.org/10.18112/openneuro.ds005516.v1.0.1
Examples
>>> from eegdash.dataset import DS005516 >>> dataset = DS005516(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005520. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 69; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005520 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005520 DOI: https://doi.org/10.18112/openneuro.ds005520.v1.0.1
Examples
>>> from eegdash.dataset import DS005520 >>> dataset = DS005520(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005522(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005522. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 55; recordings: 176; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005522 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005522 DOI: https://doi.org/10.18112/openneuro.ds005522.v1.0.0
Examples
>>> from eegdash.dataset import DS005522 >>> dataset = DS005522(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005523(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005523. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 102; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005523 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005523 DOI: https://doi.org/10.18112/openneuro.ds005523.v1.0.1
Examples
>>> from eegdash.dataset import DS005523 >>> dataset = DS005523(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005530(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005530. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005530 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005530 DOI: https://doi.org/10.18112/openneuro.ds005530.v1.0.9
Examples
>>> from eegdash.dataset import DS005530 >>> dataset = DS005530(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005540(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005540. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 59; recordings: 103; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005540 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005540 DOI: https://doi.org/10.18112/openneuro.ds005540.v1.0.7
Examples
>>> from eegdash.dataset import DS005540 >>> dataset = DS005540(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005545(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005545. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 106; recordings: 336; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005545 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005545 DOI: https://doi.org/10.18112/openneuro.ds005545.v1.0.3
Examples
>>> from eegdash.dataset import DS005545 >>> dataset = DS005545(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005555. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 128; recordings: 256; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005555 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005555 DOI: https://doi.org/10.18112/openneuro.ds005555.v1.1.1
Examples
>>> from eegdash.dataset import DS005555 >>> dataset = DS005555(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005557(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005557. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 58; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005557 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005557 DOI: https://doi.org/10.18112/openneuro.ds005557.v1.0.0
Examples
>>> from eegdash.dataset import DS005557 >>> dataset = DS005557(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005558(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005558. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005558 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005558 DOI: https://doi.org/10.18112/openneuro.ds005558.v1.0.0
Examples
>>> from eegdash.dataset import DS005558 >>> dataset = DS005558(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005565(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005565. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005565 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005565 DOI: https://doi.org/10.18112/openneuro.ds005565.v1.0.3
Examples
>>> from eegdash.dataset import DS005565 >>> dataset = DS005565(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005571(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005571. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 45; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005571 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005571 DOI: https://doi.org/10.18112/openneuro.ds005571.v1.0.1
Examples
>>> from eegdash.dataset import DS005571 >>> dataset = DS005571(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005574. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005574 DOI: https://doi.org/10.18112/openneuro.ds005574.v1.0.2
Examples
>>> from eegdash.dataset import DS005574 >>> dataset = DS005574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005586(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005586. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005586 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005586 DOI: https://doi.org/10.18112/openneuro.ds005586.v2.0.0
Examples
>>> from eegdash.dataset import DS005586 >>> dataset = DS005586(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005594(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005594. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005594 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005594 DOI: https://doi.org/10.18112/openneuro.ds005594.v1.0.3
Examples
>>> from eegdash.dataset import DS005594 >>> dataset = DS005594(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005620(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005620. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 202; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005620 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005620 DOI: https://doi.org/10.18112/openneuro.ds005620.v1.0.0
Examples
>>> from eegdash.dataset import DS005620 >>> dataset = DS005620(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005624(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005624. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005624 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005624 DOI: https://doi.org/10.18112/openneuro.ds005624.v1.0.0
Examples
>>> from eegdash.dataset import DS005624 >>> dataset = DS005624(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005628(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005628. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 102; recordings: 306; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005628 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005628 DOI: https://doi.org/10.18112/openneuro.ds005628.v1.0.0
Examples
>>> from eegdash.dataset import DS005628 >>> dataset = DS005628(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005642(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005642. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005642 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005642 DOI: https://doi.org/10.18112/openneuro.ds005642.v1.0.1
Examples
>>> from eegdash.dataset import DS005642 >>> dataset = DS005642(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005648(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005648. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005648 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005648 DOI: https://doi.org/10.18112/openneuro.ds005648.v1.0.0
Examples
>>> from eegdash.dataset import DS005648 >>> dataset = DS005648(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005662(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005662. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 80; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005662 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005662 DOI: https://doi.org/10.18112/openneuro.ds005662.v2.0.0
Examples
>>> from eegdash.dataset import DS005662 >>> dataset = DS005662(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005670(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005670. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 2; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005670 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005670 DOI: https://doi.org/10.18112/openneuro.ds005670.v1.0.0
Examples
>>> from eegdash.dataset import DS005670 >>> dataset = DS005670(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005672(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005672. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005672 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005672 DOI: https://doi.org/10.18112/openneuro.ds005672.v1.0.0
Examples
>>> from eegdash.dataset import DS005672 >>> dataset = DS005672(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005688(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005688. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 89; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005688 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005688 DOI: https://doi.org/10.18112/openneuro.ds005688.v1.0.1
Examples
>>> from eegdash.dataset import DS005688 >>> dataset = DS005688(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005691(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005691. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005691 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005691 DOI: https://doi.org/10.18112/openneuro.ds005691.v1.0.0
Examples
>>> from eegdash.dataset import DS005691 >>> dataset = DS005691(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005692(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005692. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 59; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005692 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005692 DOI: https://doi.org/10.18112/openneuro.ds005692.v1.0.0
Examples
>>> from eegdash.dataset import DS005692 >>> dataset = DS005692(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005697(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005697. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005697 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005697 DOI: https://doi.org/10.18112/openneuro.ds005697.v1.0.2
Examples
>>> from eegdash.dataset import DS005697 >>> dataset = DS005697(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005752. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 253; recordings: 22385; tasks: 14.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005752 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005752 DOI: https://doi.org/10.18112/openneuro.ds005752.v2.1.0
Examples
>>> from eegdash.dataset import DS005752 >>> dataset = DS005752(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005776(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005776. Modality:fnirs; Experiment type:Unknown; Subject type:Sensory Neuroscience. Subjects: 12; recordings: 293; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005776 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005776 DOI: https://doi.org/10.18112/openneuro.ds005776.v1.0.1
Examples
>>> from eegdash.dataset import DS005776 >>> dataset = DS005776(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005777(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005777. Modality:fnirs; Experiment type:Unknown; Subject type:Sensory Neuroscience. Subjects: 15; recordings: 698; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005777 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005777 DOI: https://doi.org/10.18112/openneuro.ds005777.v1.0.1
Examples
>>> from eegdash.dataset import DS005777 >>> dataset = DS005777(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005779(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005779. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 250; tasks: 16.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005779 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005779 DOI: https://doi.org/10.18112/openneuro.ds005779.v1.0.1
Examples
>>> from eegdash.dataset import DS005779 >>> dataset = DS005779(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005787. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 448; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005787 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005787 DOI: https://doi.org/10.18112/openneuro.ds005787.v1.0.0
Examples
>>> from eegdash.dataset import DS005787 >>> dataset = DS005787(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005795(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005795. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 39; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005795 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005795 DOI: https://doi.org/10.18112/openneuro.ds005795.v1.0.0
Examples
>>> from eegdash.dataset import DS005795 >>> dataset = DS005795(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005810. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 286; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005810 DOI: https://doi.org/10.18112/openneuro.ds005810.v1.0.6
Examples
>>> from eegdash.dataset import DS005810 >>> dataset = DS005810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005811(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005811. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 448; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005811 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005811 DOI: https://doi.org/10.18112/openneuro.ds005811.v1.0.8
Examples
>>> from eegdash.dataset import DS005811 >>> dataset = DS005811(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005815(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005815. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 103; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005815 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005815 DOI: https://doi.org/10.18112/openneuro.ds005815.v2.0.1
Examples
>>> from eegdash.dataset import DS005815 >>> dataset = DS005815(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005841(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005841. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 288; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005841 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005841 DOI: https://doi.org/10.18112/openneuro.ds005841.v1.0.0
Examples
>>> from eegdash.dataset import DS005841 >>> dataset = DS005841(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005857(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005857. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 110; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005857 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005857 DOI: https://doi.org/10.18112/openneuro.ds005857.v1.0.0
Examples
>>> from eegdash.dataset import DS005857 >>> dataset = DS005857(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005863(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005863. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 127; recordings: 357; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005863 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005863 DOI: https://doi.org/10.18112/openneuro.ds005863.v2.0.0
Examples
>>> from eegdash.dataset import DS005863 >>> dataset = DS005863(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005866(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005866. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005866 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005866 DOI: https://doi.org/10.18112/openneuro.ds005866.v1.0.1
Examples
>>> from eegdash.dataset import DS005866 >>> dataset = DS005866(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005868(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005868. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005868 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005868 DOI: https://doi.org/10.18112/openneuro.ds005868.v1.0.1
Examples
>>> from eegdash.dataset import DS005868 >>> dataset = DS005868(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005872(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005872. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005872 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005872 DOI: https://doi.org/10.18112/openneuro.ds005872.v1.0.0
Examples
>>> from eegdash.dataset import DS005872 >>> dataset = DS005872(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005873(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005873. Modality:eeg, emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 125; recordings: 5654; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005873 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005873 DOI: https://doi.org/10.18112/openneuro.ds005873.v1.1.0
Examples
>>> from eegdash.dataset import DS005873 >>> dataset = DS005873(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005876. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005876 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005876 DOI: https://doi.org/10.18112/openneuro.ds005876.v1.0.1
Examples
>>> from eegdash.dataset import DS005876 >>> dataset = DS005876(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005907(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005907. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005907 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005907 DOI: https://doi.org/10.18112/openneuro.ds005907.v1.0.0
Examples
>>> from eegdash.dataset import DS005907 >>> dataset = DS005907(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005929(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005929. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 77; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005929 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005929 DOI: https://doi.org/10.18112/openneuro.ds005929.v1.0.1
Examples
>>> from eegdash.dataset import DS005929 >>> dataset = DS005929(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005930(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005930. Modality:fnirs; Experiment type:Unknown; Subject type:Motor. Subjects: 13; recordings: 233; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005930 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005930 DOI: https://doi.org/10.18112/openneuro.ds005930.v1.0.1
Examples
>>> from eegdash.dataset import DS005930 >>> dataset = DS005930(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005931(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005931. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005931 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005931 DOI: https://doi.org/10.18112/openneuro.ds005931.v1.0.0
Examples
>>> from eegdash.dataset import DS005931 >>> dataset = DS005931(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005932(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005932. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005932 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005932 DOI: https://doi.org/10.18112/openneuro.ds005932.v1.0.0
Examples
>>> from eegdash.dataset import DS005932 >>> dataset = DS005932(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005935(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005935. Modality:fnirs; Experiment type:Unknown; Subject type:Mirror Neuron System. Subjects: 22; recordings: 430; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005935 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005935 DOI: https://doi.org/10.18112/openneuro.ds005935.v1.0.0
Examples
>>> from eegdash.dataset import DS005935 >>> dataset = DS005935(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005946(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005946. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005946 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005946 DOI: https://doi.org/10.18112/openneuro.ds005946.v1.0.1
Examples
>>> from eegdash.dataset import DS005946 >>> dataset = DS005946(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005953(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005953. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005953 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005953 DOI: https://doi.org/10.18112/openneuro.ds005953.v1.0.0
Examples
>>> from eegdash.dataset import DS005953 >>> dataset = DS005953(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005960(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005960. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005960 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005960 DOI: https://doi.org/10.18112/openneuro.ds005960.v1.0.0
Examples
>>> from eegdash.dataset import DS005960 >>> dataset = DS005960(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005963(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005963. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 291; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005963 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005963
Examples
>>> from eegdash.dataset import DS005963 >>> dataset = DS005963(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS005964(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005964. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 139; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005964 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005964 DOI: https://doi.org/10.18112/openneuro.ds005964.v1.0.0
Examples
>>> from eegdash.dataset import DS005964 >>> dataset = DS005964(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006012(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006012. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 193; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006012 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006012 DOI: https://doi.org/10.18112/openneuro.ds006012.v1.0.1
Examples
>>> from eegdash.dataset import DS006012 >>> dataset = DS006012(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006018(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006018. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 127; recordings: 357; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006018 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006018 DOI: https://doi.org/10.18112/openneuro.ds006018.v1.2.2
Examples
>>> from eegdash.dataset import DS006018 >>> dataset = DS006018(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006033(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006033. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 5; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006033 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006033 DOI: https://doi.org/10.18112/openneuro.ds006033.v1.0.1
Examples
>>> from eegdash.dataset import DS006033 >>> dataset = DS006033(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006035(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006035. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006035 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006035 DOI: https://doi.org/10.18112/openneuro.ds006035.v1.0.0
Examples
>>> from eegdash.dataset import DS006035 >>> dataset = DS006035(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006036(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006036. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 88; recordings: 88; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006036 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006036 DOI: https://doi.org/10.18112/openneuro.ds006036.v1.0.5
Examples
>>> from eegdash.dataset import DS006036 >>> dataset = DS006036(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006040(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006040. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 392; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006040 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006040 DOI: https://doi.org/10.18112/openneuro.ds006040.v1.0.1
Examples
>>> from eegdash.dataset import DS006040 >>> dataset = DS006040(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006065(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006065. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 45; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006065 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006065 DOI: https://doi.org/10.18112/openneuro.ds006065.v1.0.0
Examples
>>> from eegdash.dataset import DS006065 >>> dataset = DS006065(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006095. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 1182; tasks: 9.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006095 DOI: https://doi.org/10.18112/openneuro.ds006095.v1.0.0
Examples
>>> from eegdash.dataset import DS006095 >>> dataset = DS006095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006104. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 56; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006104 DOI: https://doi.org/10.18112/openneuro.ds006104.v1.0.1
Examples
>>> from eegdash.dataset import DS006104 >>> dataset = DS006104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006107. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 166; recordings: 167; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006107 DOI: https://doi.org/10.18112/openneuro.ds006107.v1.0.0
Examples
>>> from eegdash.dataset import DS006107 >>> dataset = DS006107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006126(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006126. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 90; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006126 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006126 DOI: https://doi.org/10.18112/openneuro.ds006126.v1.0.0
Examples
>>> from eegdash.dataset import DS006126 >>> dataset = DS006126(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006142(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006142. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 27; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006142 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006142 DOI: https://doi.org/10.18112/openneuro.ds006142.v1.0.2
Examples
>>> from eegdash.dataset import DS006142 >>> dataset = DS006142(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006159(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006159. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 671; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006159 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006159 DOI: https://doi.org/10.18112/openneuro.ds006159.v1.0.0
Examples
>>> from eegdash.dataset import DS006159 >>> dataset = DS006159(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006171(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006171. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 104; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006171 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006171 DOI: https://doi.org/10.18112/openneuro.ds006171.v1.0.0
Examples
>>> from eegdash.dataset import DS006171 >>> dataset = DS006171(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006233(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006233. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 108; recordings: 347; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006233 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006233 DOI: https://doi.org/10.18112/openneuro.ds006233.v1.0.0
Examples
>>> from eegdash.dataset import DS006233 >>> dataset = DS006233(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006234(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006234. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 119; recordings: 378; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006234 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006234 DOI: https://doi.org/10.18112/openneuro.ds006234.v1.0.0
Examples
>>> from eegdash.dataset import DS006234 >>> dataset = DS006234(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006253(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006253. Modality:ieeg; Experiment type:Unknown; Subject type:Decision-Making, Metacognition. Subjects: 23; recordings: 201; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006253 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006253 DOI: https://doi.org/10.18112/openneuro.ds006253.v1.0.3
Examples
>>> from eegdash.dataset import DS006253 >>> dataset = DS006253(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006260(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006260. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 76; recordings: 366; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006260 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006260 DOI: https://doi.org/10.18112/openneuro.ds006260.v1.0.1
Examples
>>> from eegdash.dataset import DS006260 >>> dataset = DS006260(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006269(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006269. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 40; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006269 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006269 DOI: https://doi.org/10.18112/openneuro.ds006269.v1.0.0
Examples
>>> from eegdash.dataset import DS006269 >>> dataset = DS006269(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006317(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006317. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 64; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006317 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006317 DOI: https://doi.org/10.18112/openneuro.ds006317.v1.1.0
Examples
>>> from eegdash.dataset import DS006317 >>> dataset = DS006317(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006334(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006334. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 128; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006334 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006334 DOI: https://doi.org/10.18112/openneuro.ds006334.v1.0.0
Examples
>>> from eegdash.dataset import DS006334 >>> dataset = DS006334(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006366(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006366. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 92; recordings: 148; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006366 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006366 DOI: https://doi.org/10.18112/openneuro.ds006366.v1.0.1
Examples
>>> from eegdash.dataset import DS006366 >>> dataset = DS006366(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006367(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006367. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006367 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006367 DOI: https://doi.org/10.18112/openneuro.ds006367.v1.0.1
Examples
>>> from eegdash.dataset import DS006367 >>> dataset = DS006367(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006370(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006370. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 56; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006370 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006370 DOI: https://doi.org/10.18112/openneuro.ds006370.v1.0.1
Examples
>>> from eegdash.dataset import DS006370 >>> dataset = DS006370(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006374(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006374. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 358; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006374 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006374 DOI: https://doi.org/10.18112/openneuro.ds006374.v1.0.0
Examples
>>> from eegdash.dataset import DS006374 >>> dataset = DS006374(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006377(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006377. Modality:fnirs; Experiment type:Unknown; Subject type:fNIRS. Subjects: 116; recordings: 3952; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006377 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006377 DOI: https://doi.org/10.18112/openneuro.ds006377.v1.0.2
Examples
>>> from eegdash.dataset import DS006377 >>> dataset = DS006377(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006392(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006392. Modality:ieeg; Experiment type:Unknown; Subject type:vision. Subjects: 2; recordings: 595; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006392 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006392 DOI: https://doi.org/10.18112/openneuro.ds006392.v1.0.1
Examples
>>> from eegdash.dataset import DS006392 >>> dataset = DS006392(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006394(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006394. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 60; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006394 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006394 DOI: https://doi.org/10.18112/openneuro.ds006394.v1.0.3
Examples
>>> from eegdash.dataset import DS006394 >>> dataset = DS006394(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006434(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006434. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 118; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006434 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006434 DOI: https://doi.org/10.18112/openneuro.ds006434.v1.2.0
Examples
>>> from eegdash.dataset import DS006434 >>> dataset = DS006434(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006437(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006437. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 63; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006437 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006437 DOI: https://doi.org/10.18112/openneuro.ds006437.v1.1.0
Examples
>>> from eegdash.dataset import DS006437 >>> dataset = DS006437(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006446(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006446. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006446 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006446 DOI: https://doi.org/10.18112/openneuro.ds006446.v1.0.0
Examples
>>> from eegdash.dataset import DS006446 >>> dataset = DS006446(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006459(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006459. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 176; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006459 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006459 DOI: https://doi.org/10.18112/openneuro.ds006459.v1.0.0
Examples
>>> from eegdash.dataset import DS006459 >>> dataset = DS006459(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006460(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006460. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 176; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006460 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006460
Examples
>>> from eegdash.dataset import DS006460 >>> dataset = DS006460(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006465(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006465. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006465 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006465 DOI: https://doi.org/10.18112/openneuro.ds006465.v2.0.0
Examples
>>> from eegdash.dataset import DS006465 >>> dataset = DS006465(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006466(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006466. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 1257; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006466 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006466 DOI: https://doi.org/10.18112/openneuro.ds006466.v1.0.1
Examples
>>> from eegdash.dataset import DS006466 >>> dataset = DS006466(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006468(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006468. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 189; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006468 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006468 DOI: https://doi.org/10.18112/openneuro.ds006468.v1.1.2
Examples
>>> from eegdash.dataset import DS006468 >>> dataset = DS006468(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006480(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006480. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 68; recordings: 68; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006480 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006480 DOI: https://doi.org/10.18112/openneuro.ds006480.v1.0.1
Examples
>>> from eegdash.dataset import DS006480 >>> dataset = DS006480(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006502(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006502. Modality:meg; Experiment type:Unknown; Subject type:Motor skill learning and consolidation. Subjects: 32; recordings: 4758; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006502 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006502 DOI: https://doi.org/10.18112/openneuro.ds006502.v1.0.0
Examples
>>> from eegdash.dataset import DS006502 >>> dataset = DS006502(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006519. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006519 DOI: https://doi.org/10.18112/openneuro.ds006519.v1.0.0
Examples
>>> from eegdash.dataset import DS006519 >>> dataset = DS006519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006525(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006525. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006525 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006525 DOI: https://doi.org/10.18112/openneuro.ds006525.v1.0.0
Examples
>>> from eegdash.dataset import DS006525 >>> dataset = DS006525(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006545(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006545. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 838; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006545 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006545
Examples
>>> from eegdash.dataset import DS006545 >>> dataset = DS006545(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006547(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006547. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006547 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006547 DOI: https://doi.org/10.18112/openneuro.ds006547.v1.0.0
Examples
>>> from eegdash.dataset import DS006547 >>> dataset = DS006547(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006554(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006554. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006554 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006554 DOI: https://doi.org/10.18112/openneuro.ds006554.v1.0.0
Examples
>>> from eegdash.dataset import DS006554 >>> dataset = DS006554(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006563(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006563. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 12; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006563 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006563 DOI: https://doi.org/10.18112/openneuro.ds006563.v1.0.0
Examples
>>> from eegdash.dataset import DS006563 >>> dataset = DS006563(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006576(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006576. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006576 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006576 DOI: https://doi.org/10.18112/openneuro.ds006576.v1.0.2
Examples
>>> from eegdash.dataset import DS006576 >>> dataset = DS006576(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006593(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006593. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006593 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006593 DOI: https://doi.org/10.18112/openneuro.ds006593.v1.0.0
Examples
>>> from eegdash.dataset import DS006593 >>> dataset = DS006593(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006629(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006629. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 38; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006629 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006629 DOI: https://doi.org/10.18112/openneuro.ds006629.v1.0.1
Examples
>>> from eegdash.dataset import DS006629 >>> dataset = DS006629(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006647(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006647. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 4; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006647 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006647 DOI: https://doi.org/10.18112/openneuro.ds006647.v1.0.1
Examples
>>> from eegdash.dataset import DS006647 >>> dataset = DS006647(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006648(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006648. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006648 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006648 DOI: https://doi.org/10.18112/openneuro.ds006648.v1.0.0
Examples
>>> from eegdash.dataset import DS006648 >>> dataset = DS006648(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006673(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006673. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 1556; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006673 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006673 DOI: https://doi.org/10.18112/openneuro.ds006673.v1.0.2
Examples
>>> from eegdash.dataset import DS006673 >>> dataset = DS006673(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006695(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006695. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006695 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006695 DOI: https://doi.org/10.18112/openneuro.ds006695.v1.0.2
Examples
>>> from eegdash.dataset import DS006695 >>> dataset = DS006695(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006720(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006720. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 246; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006720 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006720 DOI: https://doi.org/10.18112/openneuro.ds006720.v1.0.0
Examples
>>> from eegdash.dataset import DS006720 >>> dataset = DS006720(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006735(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006735. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 27; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006735 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006735 DOI: https://doi.org/10.18112/openneuro.ds006735.v1.0.4
Examples
>>> from eegdash.dataset import DS006735 >>> dataset = DS006735(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006761(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006761. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006761 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006761 DOI: https://doi.org/10.18112/openneuro.ds006761.v1.0.0
Examples
>>> from eegdash.dataset import DS006761 >>> dataset = DS006761(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006768(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006768. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 210; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006768 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006768 DOI: https://doi.org/10.18112/openneuro.ds006768.v1.1.0
Examples
>>> from eegdash.dataset import DS006768 >>> dataset = DS006768(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006801(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006801. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006801 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006801 DOI: https://doi.org/10.18112/openneuro.ds006801.v1.0.0
Examples
>>> from eegdash.dataset import DS006801 >>> dataset = DS006801(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006802(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006802. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006802 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006802 DOI: https://doi.org/10.18112/openneuro.ds006802.v1.0.0
Examples
>>> from eegdash.dataset import DS006802 >>> dataset = DS006802(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006803(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006803. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 63; recordings: 126; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006803 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006803 DOI: https://doi.org/10.18112/openneuro.ds006803.v1.0.0
Examples
>>> from eegdash.dataset import DS006803 >>> dataset = DS006803(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006817(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006817. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006817 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006817 DOI: https://doi.org/10.18112/openneuro.ds006817.v1.0.0
Examples
>>> from eegdash.dataset import DS006817 >>> dataset = DS006817(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006839(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006839. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 144; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006839 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006839 DOI: https://doi.org/10.18112/openneuro.ds006839.v1.0.0
Examples
>>> from eegdash.dataset import DS006839 >>> dataset = DS006839(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006840(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006840. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 128; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006840 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006840 DOI: https://doi.org/10.18112/openneuro.ds006840.v1.0.0
Examples
>>> from eegdash.dataset import DS006840 >>> dataset = DS006840(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006848(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006848. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 52; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006848 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006848 DOI: https://doi.org/10.18112/openneuro.ds006848.v1.0.0
Examples
>>> from eegdash.dataset import DS006848 >>> dataset = DS006848(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006850(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006850. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 63; recordings: 126; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006850 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006850 DOI: https://doi.org/10.18112/openneuro.ds006850.v1.0.0
Examples
>>> from eegdash.dataset import DS006850 >>> dataset = DS006850(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006861(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006861. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 120; recordings: 239; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006861 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006861 DOI: https://doi.org/10.18112/openneuro.ds006861.v1.0.2
Examples
>>> from eegdash.dataset import DS006861 >>> dataset = DS006861(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006866(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006866. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 148; recordings: 148; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006866 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006866 DOI: https://doi.org/10.18112/openneuro.ds006866.v1.0.0
Examples
>>> from eegdash.dataset import DS006866 >>> dataset = DS006866(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006890(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006890. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 870; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006890 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006890 DOI: https://doi.org/10.18112/openneuro.ds006890.v1.0.0
Examples
>>> from eegdash.dataset import DS006890 >>> dataset = DS006890(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006902(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006902. Modality:fnirs; Experiment type:Unknown; Subject type:pain, exercise. Subjects: 43; recordings: 259; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006902 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006902 DOI: https://doi.org/10.18112/openneuro.ds006902.v1.1.1
Examples
>>> from eegdash.dataset import DS006902 >>> dataset = DS006902(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006903(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006903. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 409; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006903 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006903 DOI: https://doi.org/10.18112/openneuro.ds006903.v1.0.0
Examples
>>> from eegdash.dataset import DS006903 >>> dataset = DS006903(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006910(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006910. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 121; recordings: 384; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006910 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006910 DOI: https://doi.org/10.18112/openneuro.ds006910.v1.0.1
Examples
>>> from eegdash.dataset import DS006910 >>> dataset = DS006910(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006914(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006914. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 353; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006914 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006914 DOI: https://doi.org/10.18112/openneuro.ds006914.v1.0.3
Examples
>>> from eegdash.dataset import DS006914 >>> dataset = DS006914(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006921(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006921. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 38; recordings: 152; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006921 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006921 DOI: https://doi.org/10.18112/openneuro.ds006921.v1.0.0
Examples
>>> from eegdash.dataset import DS006921 >>> dataset = DS006921(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006923(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006923. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 140; recordings: 280; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006923 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006923 DOI: https://doi.org/10.18112/openneuro.ds006923.v1.0.0
Examples
>>> from eegdash.dataset import DS006923 >>> dataset = DS006923(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006940(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006940. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 935; tasks: 15.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006940 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006940 DOI: https://doi.org/10.18112/openneuro.ds006940.v1.0.0
Examples
>>> from eegdash.dataset import DS006940 >>> dataset = DS006940(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006945(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006945. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 14; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006945 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006945 DOI: https://doi.org/10.18112/openneuro.ds006945.v1.0.0
Examples
>>> from eegdash.dataset import DS006945 >>> dataset = DS006945(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS006963(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006963. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006963 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006963 DOI: https://doi.org/10.18112/openneuro.ds006963.v1.0.0
Examples
>>> from eegdash.dataset import DS006963 >>> dataset = DS006963(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007006(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007006. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 50; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007006 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007006 DOI: https://doi.org/10.18112/openneuro.ds007006.v1.0.0
Examples
>>> from eegdash.dataset import DS007006 >>> dataset = DS007006(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007020(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007020. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 94; recordings: 94; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007020 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007020 DOI: https://doi.org/10.18112/openneuro.ds007020.v1.0.0
Examples
>>> from eegdash.dataset import DS007020 >>> dataset = DS007020(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007081(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007081. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007081 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007081 DOI: https://doi.org/10.18112/openneuro.ds007081.v1.0.0
Examples
>>> from eegdash.dataset import DS007081 >>> dataset = DS007081(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007095. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 6019; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007095 DOI: https://doi.org/10.18112/openneuro.ds007095.v1.0.0
Examples
>>> from eegdash.dataset import DS007095 >>> dataset = DS007095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007172(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007172. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 501; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007172 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007172 DOI: https://doi.org/10.18112/openneuro.ds007172.v1.0.0
Examples
>>> from eegdash.dataset import DS007172 >>> dataset = DS007172(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007175(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007175. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007175 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007175 DOI: https://doi.org/10.18112/openneuro.ds007175.v1.0.1
Examples
>>> from eegdash.dataset import DS007175 >>> dataset = DS007175(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.DS007176(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007176. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 45; recordings: 300; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007176 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007176 DOI: https://doi.org/10.18112/openneuro.ds007176.v1.0.1
Examples
>>> from eegdash.dataset import DS007176 >>> dataset = DS007176(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R1(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r1. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 136; recordings: 1342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r1 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r1 DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R1 >>> dataset = EEG2025R1(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R10(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r10. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 533; recordings: 2516; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r10 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r10
Examples
>>> from eegdash.dataset import EEG2025R10 >>> dataset = EEG2025R10(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R10MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r10mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 220; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r10mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r10mini
Examples
>>> from eegdash.dataset import EEG2025R10MINI >>> dataset = EEG2025R10MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R11(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r11. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 430; recordings: 3397; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r11 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r11
Examples
>>> from eegdash.dataset import EEG2025R11 >>> dataset = EEG2025R11(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R11MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r11mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 220; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r11mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r11mini
Examples
>>> from eegdash.dataset import EEG2025R11MINI >>> dataset = EEG2025R11MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R1MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r1mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 239; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r1mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r1mini DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R1MINI >>> dataset = EEG2025R1MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R2(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r2. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 150; recordings: 1405; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r2 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r2 DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R2 >>> dataset = EEG2025R2(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R2MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r2mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r2mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r2mini DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R2MINI >>> dataset = EEG2025R2MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R3(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r3. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 184; recordings: 1812; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r3 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r3 DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R3 >>> dataset = EEG2025R3(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R3MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r3mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r3mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r3mini DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R3MINI >>> dataset = EEG2025R3MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R4(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r4. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 324; recordings: 3342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r4 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r4 DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R4 >>> dataset = EEG2025R4(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R4MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r4mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r4mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r4mini DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R4MINI >>> dataset = EEG2025R4MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R5(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r5. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 330; recordings: 3326; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r5 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r5 DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R5 >>> dataset = EEG2025R5(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R5MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r5mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r5mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r5mini DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R5MINI >>> dataset = EEG2025R5MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R6(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r6. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 135; recordings: 1227; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r6 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r6 DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R6 >>> dataset = EEG2025R6(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R6MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r6mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 237; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r6mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r6mini DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R6MINI >>> dataset = EEG2025R6MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R7(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r7. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 381; recordings: 3100; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r7 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r7 DOI: https://doi.org/10.18112/openneuro.ds005511.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R7 >>> dataset = EEG2025R7(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R7MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r7mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 239; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r7mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r7mini DOI: https://doi.org/10.18112/openneuro.ds005511.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R7MINI >>> dataset = EEG2025R7MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R8(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r8. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 257; recordings: 2320; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r8 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r8 DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R8 >>> dataset = EEG2025R8(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R8MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r8mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 238; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r8mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r8mini DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R8MINI >>> dataset = EEG2025R8MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R9(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r9. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 295; recordings: 2885; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r9 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r9 DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R9 >>> dataset = EEG2025R9(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEG2025R9MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r9mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 237; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r9mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r9mini DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R9MINI >>> dataset = EEG2025R9MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.EEGBIDSDataset(data_dir=None, dataset='', allow_symlinks=False, modalities=None)[source]
Bases:
objectAn interface to a local BIDS dataset containing electrophysiology recordings.
This class centralizes interactions with a BIDS dataset on the local filesystem, providing methods to parse metadata, find files, and retrieve BIDS-related information. Supports multiple modalities including EEG, MEG, iEEG, and NIRS.
The class uses MNE-BIDS constants to stay synchronized with the BIDS specification and automatically supports all file formats recognized by MNE.
- Parameters:
data_dir (str or Path) – The path to the local BIDS dataset directory.
dataset (str) – A name for the dataset (e.g., “ds002718”).
allow_symlinks (bool, default False) – If True, accept broken symlinks (e.g., git-annex) for metadata extraction. If False, require actual readable files for data loading. Set to True when doing metadata digestion without loading raw data.
modalities (list of str or None, default None) – List of modalities to search for (e.g., [“eeg”, “meg”]). If None, defaults to all electrophysiology modalities from MNE-BIDS: [‘meg’, ‘eeg’, ‘ieeg’, ‘nirs’].
- RAW_EXTENSIONS
Mapping of file extensions to their companion files, dynamically built from mne_bids.config.reader.
- Type:
dict
- files
List of all recording file paths found in the dataset.
- Type:
list of str
- detected_modality
The modality of the first file found (e.g., ‘eeg’, ‘meg’).
- Type:
str
Examples
>>> # Load EEG-only dataset >>> dataset = EEGBIDSDataset( ... data_dir="/path/to/ds002718", ... dataset="ds002718", ... modalities=["eeg"] ... )
>>> # Load dataset with multiple modalities >>> dataset = EEGBIDSDataset( ... data_dir="/path/to/ds005810", ... dataset="ds005810", ... modalities=["meg", "eeg"] ... )
>>> # Metadata extraction from git-annex (symlinks) >>> dataset = EEGBIDSDataset( ... data_dir="/path/to/dataset", ... dataset="ds000001", ... allow_symlinks=True ... )
- RAW_EXTENSIONS = {'.CNT': ['.CNT'], '.EDF': ['.EDF'], '.EEG': ['.EEG'], '.bdf': ['.bdf'], '.bin': ['.bin'], '.cdt': ['.cdt'], '.cnt': ['.cnt'], '.con': ['.con'], '.ds': ['.ds'], '.edf': ['.edf'], '.fif': ['.fif'], '.lay': ['.lay'], '.pdf': ['.pdf'], '.set': ['.set', '.fdt'], '.snirf': ['.snirf'], '.sqd': ['.sqd'], '.vhdr': ['.vhdr', '.eeg', '.vmrk']}
- channel_labels(data_filepath: str) list[str][source]
Get a list of channel labels from channels.tsv.
- Parameters:
data_filepath (str) – The path to the data file.
- Returns:
A list of channel names.
- Return type:
list of str
- channel_types(data_filepath: str) list[str][source]
Get a list of channel types from channels.tsv.
- Parameters:
data_filepath (str) – The path to the data file.
- Returns:
A list of channel types.
- Return type:
list of str
- check_eeg_dataset() bool[source]
Check if the BIDS dataset contains EEG data.
- Returns:
True if the dataset’s modality is EEG, False otherwise.
- Return type:
bool
- eeg_json(data_filepath: str) dict[str, Any][source]
Get the merged eeg.json metadata for a data file.
- Parameters:
data_filepath (str) – The path to the data file.
- Returns:
The merged eeg.json metadata.
- Return type:
dict
- get_bids_file_attribute(attribute: str, data_filepath: str) Any[source]
Retrieve a specific attribute from BIDS metadata.
- Parameters:
attribute (str) – The name of the attribute to retrieve (e.g., “sfreq”, “subject”).
data_filepath (str) – The path to the data file.
- Returns:
The value of the requested attribute, or None if not found.
- Return type:
Any
- get_bids_metadata_files(filepath: str | Path, metadata_file_extension: str) list[Path][source]
Retrieve all metadata files that apply to a given data file.
Follows the BIDS inheritance principle to find all relevant metadata files (e.g.,
channels.tsv,eeg.json) for a specific recording.- Parameters:
filepath (str or Path) – The path to the data file.
metadata_file_extension (str) – The extension of the metadata file to search for (e.g., “channels.tsv”).
- Returns:
A list of paths to the matching metadata files.
- Return type:
list of Path
- get_files() list[str][source]
Get all EEG recording file paths in the BIDS dataset.
- Returns:
A list of file paths for all valid EEG recordings.
- Return type:
list of str
- get_relative_bidspath(filepath: str | Path) str[source]
Get the dataset-relative path for a file.
- Parameters:
filepath (str or Path) – The absolute or relative path to a file in the BIDS dataset.
- Returns:
The path relative to the dataset root, prefixed with the dataset name. e.g., “ds004477/sub-001/eeg/sub-001_task-PES_eeg.json”
- Return type:
str
- num_times(data_filepath: str) int[source]
Get the number of time points in the recording.
Calculated from
SamplingFrequencyandRecordingDurationin eeg.json.- Parameters:
data_filepath (str) – The path to the data file.
- Returns:
The approximate number of time points.
- Return type:
int
- subject_participant_tsv(data_filepath: str) dict[str, Any][source]
Get the participants.tsv record for a subject.
- Parameters:
data_filepath (str) – The path to a data file belonging to the subject.
- Returns:
A dictionary of the subject’s information from participants.tsv.
- Return type:
dict
- class eegdash.dataset.EEGChallengeDataset(release: str, cache_dir: str, mini: bool = True, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetA dataset helper for the EEG 2025 Challenge.
This class simplifies access to the EEG 2025 Challenge datasets. It is a specialized version of
EEGDashDatasetthat is pre-configured for the challenge’s data releases. It automatically maps a release name (e.g., “R1”) to the corresponding OpenNeuro dataset and handles the selection of subject subsets (e.g., “mini” release).- Parameters:
release (str) – The name of the challenge release to load. Must be one of the keys in
RELEASE_TO_OPENNEURO_DATASET_MAP(e.g., “R1”, “R2”, …, “R11”).cache_dir (str) – The local directory where the dataset will be downloaded and cached.
mini (bool, default True) – If True, the dataset is restricted to the official “mini” subset of subjects for the specified release. If False, all subjects for the release are included.
query (dict, optional) – An additional MongoDB-style query to apply as a filter. This query is combined with the release and subject filters using a logical AND. The query must not contain the
datasetkey, as this is determined by thereleaseparameter.s3_bucket (str, optional) – The base S3 bucket URI where the challenge data is stored. Defaults to the official challenge bucket.
**kwargs – Additional keyword arguments that are passed directly to the
EEGDashDatasetconstructor.
- Raises:
ValueError – If the specified
releaseis unknown, or if thequeryargument contains adatasetkey. Also raised ifminiis True and a requested subject is not part of the official mini-release subset.
See also
EEGDashDatasetThe base class for creating datasets from queries.
- class eegdash.dataset.EEGDashDataset(cache_dir: str | Path, query: dict[str, Any] = None, description_fields: list[str] | None = None, s3_bucket: str | None = None, records: list[dict] | None = None, download: bool = True, n_jobs: int = -1, eeg_dash_instance: Any = None, database: str | None = None, auth_token: str | None = None, **kwargs)[source]
Bases:
BaseConcatDatasetCreate a new EEGDashDataset from a given query or local BIDS dataset directory and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset instances (individual recordings) and is a subclass of braindecode’s BaseConcatDataset.
Examples
Basic usage with dataset and subject filtering:
>>> from eegdash import EEGDashDataset >>> dataset = EEGDashDataset( ... cache_dir="./data", ... dataset="ds002718", ... subject="012" ... ) >>> print(f"Number of recordings: {len(dataset)}")
Filter by multiple subjects and specific task:
>>> subjects = ["012", "013", "014"] >>> dataset = EEGDashDataset( ... cache_dir="./data", ... dataset="ds002718", ... subject=subjects, ... task="RestingState" ... )
Load and inspect EEG data from recordings:
>>> if len(dataset) > 0: ... recording = dataset[0] ... raw = recording.load() ... print(f"Sampling rate: {raw.info['sfreq']} Hz") ... print(f"Number of channels: {len(raw.ch_names)}") ... print(f"Duration: {raw.times[-1]:.1f} seconds")
Advanced filtering with raw MongoDB queries:
>>> from eegdash import EEGDashDataset >>> query = { ... "dataset": "ds002718", ... "subject": {"$in": ["012", "013"]}, ... "task": "RestingState" ... } >>> dataset = EEGDashDataset(cache_dir="./data", query=query)
Working with dataset collections and braindecode integration:
>>> # EEGDashDataset is a braindecode BaseConcatDataset >>> for i, recording in enumerate(dataset): ... if i >= 2: # limit output ... break ... print(f"Recording {i}: {recording.description}") ... raw = recording.load() ... print(f" Channels: {len(raw.ch_names)}, Duration: {raw.times[-1]:.1f}s")
- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Raw MongoDB query to filter records. If provided, it is merged with keyword filtering arguments (see
**kwargs) using logical AND. You must provide at least adataset(either inqueryor as a keyword argument). Only fields inALLOWED_QUERY_FIELDSare considered for filtering.dataset (str) – Dataset identifier (e.g.,
"ds002718"). Required ifquerydoes not already specify a dataset.task (str | list[str]) – Task name(s) to filter by (e.g.,
"RestingState").subject (str | list[str]) – Subject identifier(s) to filter by (e.g.,
"NDARCA153NKE").session (str | list[str]) – Session identifier(s) to filter by (e.g.,
"1").run (str | list[str]) – Run identifier(s) to filter by (e.g.,
"1").description_fields (list[str]) – Fields to extract from each record and include in dataset descriptions (e.g., “subject”, “session”, “run”, “task”).
s3_bucket (str | None) – Optional S3 bucket URI (e.g., “s3://mybucket”) to use instead of the default OpenNeuro bucket when downloading data files.
records (list[dict] | None) – Pre-fetched metadata records. If provided, the dataset is constructed directly from these records and no MongoDB query is performed.
download (bool, default True) – If False, load from local BIDS files only. Local data are expected under
cache_dir / dataset; no DB or S3 access is attempted.n_jobs (int) – Number of parallel jobs to use where applicable (-1 uses all cores).
eeg_dash_instance (EEGDash | None) – Optional existing EEGDash client to reuse for DB queries. If None, a new client is created on demand, not used in the case of no download.
database (str | None) – Database name to use (e.g., “eegdash”, “eegdash_staging”). If None, uses the default database.
auth_token (str | None) – Authentication token for accessing protected databases. Required for staging or admin operations.
**kwargs (dict) –
Additional keyword arguments serving two purposes:
Filtering: any keys present in
ALLOWED_QUERY_FIELDSare treated as query filters (e.g.,dataset,subject,task, …).Dataset options: remaining keys are forwarded to
EEGDashRaw.
- datasets: list[T]
- download_all(n_jobs: int | None = None) None[source]
Download missing remote files in parallel.
- Parameters:
n_jobs (int | None) – Number of parallel workers to use. If None, defaults to
self.n_jobs.
- save(path, overwrite=False)[source]
Save the dataset to disk.
- Parameters:
path (str or Path) – Destination file path.
overwrite (bool, default False) – If True, overwrite existing file.
- Return type:
None
- class eegdash.dataset.NM000103(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000103. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 447; recordings: 3522; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000103 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000103 DOI: https://doi.org/10.5281/zenodo.17306881
Examples
>>> from eegdash.dataset import NM000103 >>> dataset = NM000103(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.NM000104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000104. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 108; recordings: 1135; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000104 DOI: https://doi.org/10.5281/zenodo.17287903
Examples
>>> from eegdash.dataset import NM000104 >>> dataset = NM000104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.NM000105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000105. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 100; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000105 DOI: https://doi.org/10.5281/zenodo.17283593
Examples
>>> from eegdash.dataset import NM000105 >>> dataset = NM000105(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.NM000106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000106. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 807; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000106 DOI: https://doi.org/10.5281/zenodo.17283865
Examples
>>> from eegdash.dataset import NM000106 >>> dataset = NM000106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.NM000107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000107. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 182; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000107 DOI: https://doi.org/10.5281/zenodo.17282507
Examples
>>> from eegdash.dataset import NM000107 >>> dataset = NM000107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- eegdash.dataset.register_openneuro_datasets(summary_file: str | Path | None = None, *, base_class=None, namespace: Dict[str, Any] | None = None, add_to_all: bool = True, from_api: bool = False, api_url: str = 'https://data.eegdash.org/api', database: str = 'eegdash') Dict[str, type][source]
Dynamically create and register dataset classes from a summary file or API.
This function reads a CSV file or queries the API containing summaries of datasets and dynamically creates a Python class for each dataset. These classes inherit from a specified base class and are pre-configured with the dataset’s ID.
- Parameters:
summary_file (str or pathlib.Path) – The path to the CSV file containing the dataset summaries.
base_class (type, optional) – The base class from which the new dataset classes will inherit. If not provided,
eegdash.api.EEGDashDatasetis used.namespace (dict, optional) – The namespace (e.g., globals()) into which the newly created classes will be injected. Defaults to the local globals() of this module.
add_to_all (bool, default True) – If True, the names of the newly created classes are added to the __all__ list of the target namespace, making them importable with from … import *.
- Returns:
A dictionary mapping the names of the registered classes to the class types themselves.
- Return type:
dict[str, type]