eegdash.dataset.dataset module#

class eegdash.dataset.dataset.DS001785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds001785.

Modality: Tactile | Type: Perception | Subjects: Healthy

This dataset contains 18 subjects with 54 recordings across 3 tasks. Total duration: 14.644 hours. Dataset size: 27.86 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds001785

18

63

3

1000,1024

14.644

27.86 GB

Short overview of dataset ds001785 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds001785 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS001785
>>> dataset = DS001785(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS001785(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS001787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds001787.

Modality: Auditory | Type: Attention | Subjects: Healthy

This dataset contains 24 subjects with 40 recordings across 1 tasks. Total duration: 27.607 hours. Dataset size: 5.69 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds001787

24

64

1

256

27.607

5.69 GB

Short overview of dataset ds001787 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds001787 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS001787
>>> dataset = DS001787(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS001787(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS001810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds001810.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 47 subjects with 263 recordings across 1 tasks. Total duration: 91.205 hours. Dataset size: 109.70 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds001810

47

64

1

512

91.205

109.70 GB

Short overview of dataset ds001810 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds001810 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS001810
>>> dataset = DS001810(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS001810(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS001849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds001849.

Modality: Multisensory | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 20 subjects with 120 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 44.51 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds001849

20

30

1

5000

0

44.51 GB

Short overview of dataset ds001849 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds001849 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS001849
>>> dataset = DS001849(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS001849(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS001971(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds001971.

Modality: Auditory | Type: Motor | Subjects: Healthy

This dataset contains 20 subjects with 273 recordings across 1 tasks. Total duration: 46.183 hours. Dataset size: 31.98 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds001971

20

108

1

512

46.183

31.98 GB

Short overview of dataset ds001971 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds001971 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS001971
>>> dataset = DS001971(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS001971(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002034.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 14 subjects with 167 recordings across 4 tasks. Total duration: 37.248 hours. Dataset size: 10.10 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002034

14

64

4

512

37.248

10.10 GB

Short overview of dataset ds002034 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002034 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002034
>>> dataset = DS002034(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002034(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002094(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002094.

Modality: Resting State | Type: Resting state | Subjects: nan

This dataset contains 20 subjects with 43 recordings across 3 tasks. Total duration: 18.593 hours. Dataset size: 39.45 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002094

20

30

3

5000

18.593

39.45 GB

Short overview of dataset ds002094 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002094 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002094
>>> dataset = DS002094(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002094(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002158(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002158.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 20 subjects with 117 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 428.59 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002158

20

1

0

428.59 GB

Short overview of dataset ds002158 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002158 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002158
>>> dataset = DS002158(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002158(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002181(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002181.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 226 subjects with 226 recordings across 1 tasks. Total duration: 7.676 hours. Dataset size: 150.89 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002181

226

125

1

500

7.676

150.89 MB

Short overview of dataset ds002181 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002181 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002181
>>> dataset = DS002181(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002181(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002218(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002218.

Modality: Multisensory | Type: Perception | Subjects: Healthy

This dataset contains 18 subjects with 18 recordings across 1 tasks. Total duration: 16.52 hours. Dataset size: 1.95 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002218

18

0

1

256

16.52

1.95 GB

Short overview of dataset ds002218 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002218 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002218
>>> dataset = DS002218(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002218(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002336(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002336.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 10 subjects with 54 recordings across 6 tasks. Total duration: 0.0 hours. Dataset size: 17.98 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002336

10

6

5000

0

17.98 GB

Short overview of dataset ds002336 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002336 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002336
>>> dataset = DS002336(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002336(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002338(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002338.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 17 subjects with 85 recordings across 4 tasks. Total duration: 0.0 hours. Dataset size: 25.89 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002338

17

4

5000

0

25.89 GB

Short overview of dataset ds002338 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002338 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002338
>>> dataset = DS002338(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002338(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002578(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002578.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 2 subjects with 2 recordings across 1 tasks. Total duration: 1.455 hours. Dataset size: 1.33 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002578

2

256

1

256

1.455

1.33 GB

Short overview of dataset ds002578 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002578 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002578
>>> dataset = DS002578(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002578(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002680(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002680.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 14 subjects with 350 recordings across 1 tasks. Total duration: 21.244 hours. Dataset size: 9.22 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002680

14

31

1

1000

21.244

9.22 GB

Short overview of dataset ds002680 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002680 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002680
>>> dataset = DS002680(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002680(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002691(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002691.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 6.721 hours. Dataset size: 776.76 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002691

20

32

1

250

6.721

776.76 MB

Short overview of dataset ds002691 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002691 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002691
>>> dataset = DS002691(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002691(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002718.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 18 subjects with 18 recordings across 1 tasks. Total duration: 14.844 hours. Dataset size: 4.31 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002718

18

74

1

250

14.844

4.31 GB

Short overview of dataset ds002718 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002718 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002718
>>> dataset = DS002718(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002718(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002720(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002720.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 18 subjects with 165 recordings across 10 tasks. Total duration: 0.0 hours. Dataset size: 2.39 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002720

18

19

10

1000

0

2.39 GB

Short overview of dataset ds002720 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002720 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002720
>>> dataset = DS002720(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002720(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002721(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002721.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 31 subjects with 185 recordings across 6 tasks. Total duration: 0.0 hours. Dataset size: 3.35 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002721

31

19

6

1000

0

3.35 GB

Short overview of dataset ds002721 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002721 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002721
>>> dataset = DS002721(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002721(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002722(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002722.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 19 subjects with 94 recordings across 5 tasks. Total duration: 0.0 hours. Dataset size: 6.10 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002722

19

32

5

1000

0

6.10 GB

Short overview of dataset ds002722 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002722 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002722
>>> dataset = DS002722(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002722(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002723(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002723.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 8 subjects with 44 recordings across 6 tasks. Total duration: 0.0 hours. Dataset size: 2.60 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002723

8

32

6

1000

0

2.60 GB

Short overview of dataset ds002723 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002723 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002723
>>> dataset = DS002723(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002723(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002724(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002724.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 10 subjects with 96 recordings across 4 tasks. Total duration: 0.0 hours. Dataset size: 8.52 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002724

10

32

4

1000

0

8.52 GB

Short overview of dataset ds002724 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002724 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002724
>>> dataset = DS002724(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002724(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002725(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002725.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 21 subjects with 105 recordings across 5 tasks. Total duration: 0.0 hours. Dataset size: 15.32 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002725

21

30

5

1000

0

15.32 GB

Short overview of dataset ds002725 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002725 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002725
>>> dataset = DS002725(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002725(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002778(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002778.

Modality: Resting State | Type: Resting state | Subjects: Parkinson’s

This dataset contains 31 subjects with 46 recordings across 1 tasks. Total duration: 2.518 hours. Dataset size: 545.00 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002778

31

40

1

512

2.518

545.00 MB

Short overview of dataset ds002778 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002778 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002778
>>> dataset = DS002778(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002778(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002814(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002814.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 21 subjects with 168 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 48.57 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002814

21

68

1

1200

0

48.57 GB

Short overview of dataset ds002814 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002814 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002814
>>> dataset = DS002814(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002814(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002833(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002833.

Modality: Auditory | Type: Decision-making | Subjects: nan

This dataset contains 20 subjects with 80 recordings across 1 tasks. Total duration: 11.604 hours. Dataset size: 39.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002833

20

257

1

1000

11.604

39.77 GB

Short overview of dataset ds002833 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002833 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002833
>>> dataset = DS002833(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002833(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS002893(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds002893.

Modality: Multisensory | Type: Attention | Subjects: Healthy

This dataset contains 49 subjects with 52 recordings across 1 tasks. Total duration: 36.114 hours. Dataset size: 7.70 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds002893

49

33

1

250,250.0293378038558

36.114

7.70 GB

Short overview of dataset ds002893 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds002893 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS002893
>>> dataset = DS002893(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS002893(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003004(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003004.

Modality: Auditory | Type: Affect | Subjects: Healthy

This dataset contains 34 subjects with 34 recordings across 1 tasks. Total duration: 49.072 hours. Dataset size: 35.63 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003004

34

134,180,189,196,201,206,207,208,209,211,212,213,214,215,218,219,220,221,222,223,224,226,227,229,231,232,235

1

256

49.072

35.63 GB

Short overview of dataset ds003004 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003004 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003004
>>> dataset = DS003004(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003004(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003039(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003039.

Modality: Motor | Type: Motor | Subjects: Healthy

This dataset contains 16 subjects with 16 recordings across 1 tasks. Total duration: 14.82 hours. Dataset size: 7.82 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003039

16

64

1

500

14.82

7.82 GB

Short overview of dataset ds003039 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003039 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003039
>>> dataset = DS003039(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003039(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003061(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003061.

Modality: Auditory | Type: Perception | Subjects: nan

This dataset contains 13 subjects with 39 recordings across 1 tasks. Total duration: 8.196 hours. Dataset size: 2.26 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003061

13

79

1

256

8.196

2.26 GB

Short overview of dataset ds003061 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003061 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003061
>>> dataset = DS003061(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003061(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003190(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003190.

Modality: Visual | Type: Perception | Subjects: nan

This dataset contains 19 subjects with 280 recordings across 1 tasks. Total duration: 29.891 hours. Dataset size: 1.27 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003190

19

0

1

256

29.891

1.27 GB

Short overview of dataset ds003190 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003190 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003190
>>> dataset = DS003190(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003190(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003194(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003194.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Parkinson’s

This dataset contains 15 subjects with 29 recordings across 2 tasks. Total duration: 7.178 hours. Dataset size: 189.15 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003194

15

19,21

2

200

7.178

189.15 MB

Short overview of dataset ds003194 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003194 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003194
>>> dataset = DS003194(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003194(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003195(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003195.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Parkinson’s

This dataset contains 10 subjects with 20 recordings across 2 tasks. Total duration: 4.654 hours. Dataset size: 121.08 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003195

10

19

2

200

4.654

121.08 MB

Short overview of dataset ds003195 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003195 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003195
>>> dataset = DS003195(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003195(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003343(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003343.

Modality: Tactile | Type: Perception | Subjects: Healthy

This dataset contains 20 subjects with 59 recordings across 1 tasks. Total duration: 6.551 hours. Dataset size: 663.50 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003343

20

16

1

500

6.551

663.50 MB

Short overview of dataset ds003343 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003343 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003343
>>> dataset = DS003343(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003343(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003421(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003421.

Modality: Multisensory | Type: Decision-making | Subjects: Healthy

This dataset contains 20 subjects with 80 recordings across 1 tasks. Total duration: 11.604 hours. Dataset size: 76.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003421

20

257

1

1000

11.604

76.77 GB

Short overview of dataset ds003421 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003421 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003421
>>> dataset = DS003421(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003421(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003458(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003458.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 23 subjects with 23 recordings across 1 tasks. Total duration: 10.447 hours. Dataset size: 4.72 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003458

23

64

1

500

10.447

4.72 GB

Short overview of dataset ds003458 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003458 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003458
>>> dataset = DS003458(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003458(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003474(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003474.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 122 subjects with 122 recordings across 1 tasks. Total duration: 36.61 hours. Dataset size: 16.64 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003474

122

64

1

500

36.61

16.64 GB

Short overview of dataset ds003474 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003474 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003474
>>> dataset = DS003474(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003474(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003478(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003478.

Modality: Resting State | Type: Resting state | Subjects: Healthy

This dataset contains 122 subjects with 243 recordings across 1 tasks. Total duration: 23.57 hours. Dataset size: 10.65 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003478

122

64

1

500

23.57

10.65 GB

Short overview of dataset ds003478 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003478 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003478
>>> dataset = DS003478(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003478(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003490(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003490.

Modality: Auditory | Type: Attention | Subjects: Parkinson’s

This dataset contains 50 subjects with 75 recordings across 1 tasks. Total duration: 12.76 hours. Dataset size: 5.85 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003490

50

64

1

500

12.76

5.85 GB

Short overview of dataset ds003490 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003490 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003490
>>> dataset = DS003490(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003490(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003505.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 19 subjects with 37 recordings across 2 tasks. Total duration: 0.0 hours. Dataset size: 90.13 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003505

19

128

2

2048

0

90.13 GB

Short overview of dataset ds003505 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003505 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003505
>>> dataset = DS003505(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003505(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003506.

Modality: Visual | Type: Decision-making | Subjects: Parkinson’s

This dataset contains 56 subjects with 84 recordings across 1 tasks. Total duration: 35.381 hours. Dataset size: 16.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003506

56

64

1

500

35.381

16.21 GB

Short overview of dataset ds003506 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003506 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003506
>>> dataset = DS003506(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003506(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003509.

Modality: Visual | Type: Learning | Subjects: Parkinson’s

This dataset contains 56 subjects with 84 recordings across 1 tasks. Total duration: 48.535 hours. Dataset size: 22.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003509

56

64

1

500

48.535

22.34 GB

Short overview of dataset ds003509 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003509 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003509
>>> dataset = DS003509(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003509(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003516.

Modality: Auditory | Type: Attention | Subjects: Healthy

This dataset contains 25 subjects with 25 recordings across 1 tasks. Total duration: 22.57 hours. Dataset size: 13.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003516

25

47

1

500

22.57

13.46 GB

Short overview of dataset ds003516 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003516 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003516
>>> dataset = DS003516(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003516(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003517(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003517.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 17 subjects with 34 recordings across 1 tasks. Total duration: 13.273 hours. Dataset size: 6.48 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003517

17

64

1

500

13.273

6.48 GB

Short overview of dataset ds003517 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003517 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003517
>>> dataset = DS003517(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003517(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003518(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003518.

Modality: Visual | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 110 subjects with 137 recordings across 1 tasks. Total duration: 89.888 hours. Dataset size: 39.51 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003518

110

64

1

500

89.888

39.51 GB

Short overview of dataset ds003518 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003518 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003518
>>> dataset = DS003518(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003518(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003519.

Modality: Visual | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 27 subjects with 54 recordings across 1 tasks. Total duration: 20.504 hours. Dataset size: 8.96 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003519

27

64

1

500

20.504

8.96 GB

Short overview of dataset ds003519 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003519 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003519
>>> dataset = DS003519(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003519(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003522(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003522.

Modality: Auditory | Type: Decision-making | Subjects: TBI

This dataset contains 96 subjects with 200 recordings across 1 tasks. Total duration: 57.079 hours. Dataset size: 25.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003522

96

64

1

500

57.079

25.36 GB

Short overview of dataset ds003522 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003522 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003522
>>> dataset = DS003522(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003522(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003523(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003523.

Modality: Visual | Type: Memory | Subjects: TBI

This dataset contains 91 subjects with 221 recordings across 1 tasks. Total duration: 84.586 hours. Dataset size: 37.54 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003523

91

64

1

500

84.586

37.54 GB

Short overview of dataset ds003523 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003523 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003523
>>> dataset = DS003523(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003523(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003555.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Epilepsy

This dataset contains 30 subjects with 30 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 28.27 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003555

30

1

1024

0

28.27 GB

Short overview of dataset ds003555 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003555 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003555
>>> dataset = DS003555(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003555(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003570(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003570.

Modality: Auditory | Type: Decision-making | Subjects: Healthy

This dataset contains 40 subjects with 40 recordings across 1 tasks. Total duration: 26.208 hours. Dataset size: 36.12 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003570

40

64

1

2048

26.208

36.12 GB

Short overview of dataset ds003570 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003570 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003570
>>> dataset = DS003570(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003570(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003574.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 18 subjects with 18 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 14.79 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003574

18

64

1

500

0

14.79 GB

Short overview of dataset ds003574 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003574 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003574
>>> dataset = DS003574(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003574(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003602.

Modality: Visual | Type: Decision-making | Subjects: Other

This dataset contains 118 subjects with 699 recordings across 6 tasks. Total duration: 159.35 hours. Dataset size: 73.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003602

118

35

6

1000

159.35

73.21 GB

Short overview of dataset ds003602 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003602 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003602
>>> dataset = DS003602(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003602(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003626.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 10 subjects with 30 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 24.99 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003626

10

1

0

24.99 GB

Short overview of dataset ds003626 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003626 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003626
>>> dataset = DS003626(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003626(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003638(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003638.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 57 subjects with 57 recordings across 1 tasks. Total duration: 40.597 hours. Dataset size: 16.31 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003638

57

64

1

512

40.597

16.31 GB

Short overview of dataset ds003638 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003638 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003638
>>> dataset = DS003638(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003638(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003645(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003645.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 18 subjects with 108 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 105.89 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003645

18

1

0

105.89 GB

Short overview of dataset ds003645 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003645 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003645
>>> dataset = DS003645(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003645(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003655(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003655.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 156 subjects with 156 recordings across 1 tasks. Total duration: 130.923 hours. Dataset size: 20.26 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003655

156

19

1

500

130.923

20.26 GB

Short overview of dataset ds003655 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003655 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003655
>>> dataset = DS003655(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003655(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003670(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003670.

Modality: Visual | Type: Attention | Subjects: nan

This dataset contains 25 subjects with 62 recordings across 1 tasks. Total duration: 72.772 hours. Dataset size: 97.53 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003670

25

32

1

2000

72.772

97.53 GB

Short overview of dataset ds003670 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003670 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003670
>>> dataset = DS003670(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003670(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003690(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003690.

Modality: Auditory | Type: Decision-making | Subjects: Healthy

This dataset contains 75 subjects with 375 recordings across 3 tasks. Total duration: 46.771 hours. Dataset size: 21.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003690

75

64,66

3

500

46.771

21.46 GB

Short overview of dataset ds003690 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003690 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003690
>>> dataset = DS003690(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003690(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003702(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003702.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 47 subjects with 47 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 60.93 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003702

47

61

1

500

0

60.93 GB

Short overview of dataset ds003702 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003702 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003702
>>> dataset = DS003702(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003702(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003710(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003710.

Modality: Multisensory | Type: Perception | Subjects: Healthy

This dataset contains 13 subjects with 48 recordings across 1 tasks. Total duration: 9.165 hours. Dataset size: 10.18 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003710

13

32

1

5000

9.165

10.18 GB

Short overview of dataset ds003710 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003710 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003710
>>> dataset = DS003710(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003710(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003739(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003739.

Modality: Motor | Type: Perception | Subjects: Healthy

This dataset contains 30 subjects with 120 recordings across 4 tasks. Total duration: 20.574 hours. Dataset size: 10.94 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003739

30

128

4

256

20.574

10.94 GB

Short overview of dataset ds003739 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003739 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003739
>>> dataset = DS003739(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003739(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003751(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003751.

Modality: Multisensory | Type: Affect | Subjects: Healthy

This dataset contains 38 subjects with 38 recordings across 1 tasks. Total duration: 19.95 hours. Dataset size: 4.71 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003751

38

128

1

250

19.95

4.71 GB

Short overview of dataset ds003751 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003751 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003751
>>> dataset = DS003751(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003751(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003753(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003753.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 25 subjects with 25 recordings across 1 tasks. Total duration: 10.104 hours. Dataset size: 4.62 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003753

25

64

1

500

10.104

4.62 GB

Short overview of dataset ds003753 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003753 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003753
>>> dataset = DS003753(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003753(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003766(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003766.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 31 subjects with 124 recordings across 4 tasks. Total duration: 39.973 hours. Dataset size: 152.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003766

31

129

4

1000

39.973

152.77 GB

Short overview of dataset ds003766 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003766 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003766
>>> dataset = DS003766(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003766(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003768(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003768.

Modality: Sleep | Type: Sleep | Subjects: Healthy

This dataset contains 33 subjects with 255 recordings across 2 tasks. Total duration: 0.0 hours. Dataset size: 89.24 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003768

33

2

0

89.24 GB

Short overview of dataset ds003768 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003768 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003768
>>> dataset = DS003768(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003768(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003801(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003801.

Modality: Auditory | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 13.689 hours. Dataset size: 1.15 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003801

20

24

1

250

13.689

1.15 GB

Short overview of dataset ds003801 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003801 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003801
>>> dataset = DS003801(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003801(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003805(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003805.

Modality: Multisensory | Type: Learning | Subjects: Healthy

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.033 hours. Dataset size: 16.96 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003805

1

19

1

500

0.033

16.96 MB

Short overview of dataset ds003805 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003805 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003805
>>> dataset = DS003805(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003805(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003810.

Modality: Motor | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 10 subjects with 50 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 69.31 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003810

10

15

1

125

0

69.31 MB

Short overview of dataset ds003810 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003810 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003810
>>> dataset = DS003810(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003810(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003816(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003816.

Modality: Other | Type: Affect | Subjects: Healthy

This dataset contains 48 subjects with 1077 recordings across 8 tasks. Total duration: 159.313 hours. Dataset size: 53.97 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003816

48

127

8

1000

159.313

53.97 GB

Short overview of dataset ds003816 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003816 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003816
>>> dataset = DS003816(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003816(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003822(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003822.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 25 subjects with 25 recordings across 1 tasks. Total duration: 12.877 hours. Dataset size: 5.82 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003822

25

64

1

500

12.877

5.82 GB

Short overview of dataset ds003822 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003822 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003822
>>> dataset = DS003822(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003822(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003825(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003825.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 50 subjects with 50 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 55.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003825

50

63,128

1

1000

0

55.34 GB

Short overview of dataset ds003825 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003825 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003825
>>> dataset = DS003825(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003825(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003838(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003838.

Modality: Auditory | Type: Memory | Subjects: Healthy

This dataset contains 65 subjects with 130 recordings across 2 tasks. Total duration: 136.757 hours. Dataset size: 253.29 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003838

65

63

2

1000

136.757

253.29 GB

Short overview of dataset ds003838 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003838 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003838
>>> dataset = DS003838(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003838(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003846(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003846.

Modality: Multisensory | Type: Decision-making | Subjects: Healthy

This dataset contains 19 subjects with 60 recordings across 1 tasks. Total duration: 24.574 hours. Dataset size: 11.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003846

19

64

1

500

24.574

11.36 GB

Short overview of dataset ds003846 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003846 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003846
>>> dataset = DS003846(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003846(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003885(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003885.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 24 subjects with 24 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 82.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003885

24

128

1

1000

0

82.21 GB

Short overview of dataset ds003885 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003885 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003885
>>> dataset = DS003885(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003885(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003887(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003887.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 24 subjects with 24 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 80.10 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003887

24

128

1

1000

0

80.10 GB

Short overview of dataset ds003887 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003887 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003887
>>> dataset = DS003887(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003887(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003944(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003944.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Schizophrenia/Psychosis

This dataset contains 82 subjects with 82 recordings across 1 tasks. Total duration: 6.999 hours. Dataset size: 6.15 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003944

82

61

1

1000,3000.00030000003

6.999

6.15 GB

Short overview of dataset ds003944 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003944 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003944
>>> dataset = DS003944(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003944(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003947(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003947.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Schizophrenia/Psychosis

This dataset contains 61 subjects with 61 recordings across 1 tasks. Total duration: 5.266 hours. Dataset size: 12.54 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003947

61

61

1

1000,3000.00030000003

5.266

12.54 GB

Short overview of dataset ds003947 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003947 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003947
>>> dataset = DS003947(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003947(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003969(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003969.

Modality: Auditory | Type: Attention | Subjects: Healthy

This dataset contains 98 subjects with 392 recordings across 4 tasks. Total duration: 66.512 hours. Dataset size: 54.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003969

98

64

4

1024,2048

66.512

54.46 GB

Short overview of dataset ds003969 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003969 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003969
>>> dataset = DS003969(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003969(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS003987(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds003987.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 23 subjects with 69 recordings across 1 tasks. Total duration: 52.076 hours. Dataset size: 26.41 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds003987

23

64

1

500.093

52.076

26.41 GB

Short overview of dataset ds003987 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds003987 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS003987
>>> dataset = DS003987(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS003987(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004000(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004000.

Modality: Multisensory | Type: Decision-making | Subjects: Schizophrenia/Psychosis

This dataset contains 43 subjects with 86 recordings across 2 tasks. Total duration: 0.0 hours. Dataset size: 22.50 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004000

43

128

2

2048

0

22.50 GB

Short overview of dataset ds004000 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004000 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004000
>>> dataset = DS004000(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004000(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004010(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004010.

Modality: Multisensory | Type: Attention | Subjects: Healthy

This dataset contains 24 subjects with 24 recordings across 1 tasks. Total duration: 26.457 hours. Dataset size: 23.14 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004010

24

64

1

1000

26.457

23.14 GB

Short overview of dataset ds004010 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004010 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004010
>>> dataset = DS004010(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004010(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004015(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004015.

Modality: Auditory | Type: Attention | Subjects: Healthy

This dataset contains 36 subjects with 36 recordings across 1 tasks. Total duration: 47.29 hours. Dataset size: 6.03 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004015

36

18

1

500

47.29

6.03 GB

Short overview of dataset ds004015 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004015 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004015
>>> dataset = DS004015(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004015(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004018(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004018.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 16 subjects with 32 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 10.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004018

16

63

1

1000

0

10.56 GB

Short overview of dataset ds004018 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004018 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004018
>>> dataset = DS004018(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004018(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004022(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004022.

Modality: Visual | Type: Motor | Subjects: Other

This dataset contains 7 subjects with 21 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 634.93 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004022

7

16,18

1

500

0

634.93 MB

Short overview of dataset ds004022 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004022 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004022
>>> dataset = DS004022(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004022(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004024(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004024.

Modality: Visual | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 13 subjects with 497 recordings across 3 tasks. Total duration: 55.503 hours. Dataset size: 1021.22 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004024

13

64

3

20000

55.503

1021.22 GB

Short overview of dataset ds004024 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004024 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004024
>>> dataset = DS004024(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004024(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004033(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004033.

Modality: Motor | Type: Motor | Subjects: nan

This dataset contains 18 subjects with 36 recordings across 2 tasks. Total duration: 42.645 hours. Dataset size: 19.81 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004033

18

64

2

500

42.645

19.81 GB

Short overview of dataset ds004033 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004033 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004033
>>> dataset = DS004033(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004033(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004040(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004040.

Modality: Auditory | Type: Other | Subjects: Healthy

This dataset contains 2 subjects with 4 recordings across 1 tasks. Total duration: 4.229 hours. Dataset size: 11.59 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004040

2

64

1

512

4.229

11.59 GB

Short overview of dataset ds004040 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004040 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004040
>>> dataset = DS004040(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004040(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004043(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004043.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 30.44 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004043

20

63

1

1000

0

30.44 GB

Short overview of dataset ds004043 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004043 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004043
>>> dataset = DS004043(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004043(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004067(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004067.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 80 subjects with 84 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 100.79 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004067

80

63

1

2000

0

100.79 GB

Short overview of dataset ds004067 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004067 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004067
>>> dataset = DS004067(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004067(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004075(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004075.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 29 subjects with 116 recordings across 4 tasks. Total duration: 0.0 hours. Dataset size: 7.39 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004075

29

4

1000

0

7.39 GB

Short overview of dataset ds004075 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004075 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004075
>>> dataset = DS004075(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004075(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004117(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004117.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 23 subjects with 85 recordings across 1 tasks. Total duration: 15.941 hours. Dataset size: 5.80 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004117

23

69

1

1000,250,500,500.059

15.941

5.80 GB

Short overview of dataset ds004117 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004117 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004117
>>> dataset = DS004117(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004117(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004152(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004152.

Modality: Multisensory | Type: Learning | Subjects: Healthy

This dataset contains 21 subjects with 21 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 4.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004152

21

31

1

1000

0

4.77 GB

Short overview of dataset ds004152 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004152 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004152
>>> dataset = DS004152(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004152(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004196(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004196.

Modality: Visual | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 4 subjects with 4 recordings across 1 tasks. Total duration: 1.511 hours. Dataset size: 9.33 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004196

4

64

1

512

1.511

9.33 GB

Short overview of dataset ds004196 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004196 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004196
>>> dataset = DS004196(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004196(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004200(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004200.

Modality: Multisensory | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 14.123 hours. Dataset size: 7.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004200

20

37

1

1000

14.123

7.21 GB

Short overview of dataset ds004200 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004200 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004200
>>> dataset = DS004200(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004200(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004252(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004252.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 4.31 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004252

1

1

0

4.31 GB

Short overview of dataset ds004252 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004252 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004252
>>> dataset = DS004252(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004252(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004256(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004256.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 53 subjects with 53 recordings across 2 tasks. Total duration: 42.337 hours. Dataset size: 18.18 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004256

53

64

2

500

42.337

18.18 GB

Short overview of dataset ds004256 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004256 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004256
>>> dataset = DS004256(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004256(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004262.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 21 subjects with 21 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 3.48 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004262

21

31

1

1000

0

3.48 GB

Short overview of dataset ds004262 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004262 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004262
>>> dataset = DS004262(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004262(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004264(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004264.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 21 subjects with 21 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 3.30 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004264

21

31

1

1000

0

3.30 GB

Short overview of dataset ds004264 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004264 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004264
>>> dataset = DS004264(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004264(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004279(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004279.

Modality: Auditory | Type: Perception | Subjects: Healthy

This dataset contains 56 subjects with 60 recordings across 1 tasks. Total duration: 53.729 hours. Dataset size: 25.22 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004279

56

64

1

1000

53.729

25.22 GB

Short overview of dataset ds004279 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004279 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004279
>>> dataset = DS004279(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004279(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004284(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004284.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 18 subjects with 18 recordings across 1 tasks. Total duration: 9.454 hours. Dataset size: 16.49 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004284

18

129

1

1000

9.454

16.49 GB

Short overview of dataset ds004284 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004284 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004284
>>> dataset = DS004284(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004284(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004295(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004295.

Modality: Multisensory | Type: Learning | Subjects: Healthy

This dataset contains 26 subjects with 26 recordings across 1 tasks. Total duration: 34.313 hours. Dataset size: 31.51 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004295

26

66

1

1024,512

34.313

31.51 GB

Short overview of dataset ds004295 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004295 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004295
>>> dataset = DS004295(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004295(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004306(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004306.

Modality: Multisensory | Type: Perception | Subjects: Healthy

This dataset contains 12 subjects with 15 recordings across 1 tasks. Total duration: 18.183 hours. Dataset size: 79.11 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004306

12

124

1

1024

18.183

79.11 GB

Short overview of dataset ds004306 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004306 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004306
>>> dataset = DS004306(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004306(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004315(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004315.

Modality: Multisensory | Type: Affect | Subjects: Healthy

This dataset contains 50 subjects with 50 recordings across 1 tasks. Total duration: 21.104 hours. Dataset size: 9.81 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004315

50

60

1

500

21.104

9.81 GB

Short overview of dataset ds004315 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004315 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004315
>>> dataset = DS004315(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004315(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004317(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004317.

Modality: Multisensory | Type: Affect | Subjects: Healthy

This dataset contains 50 subjects with 50 recordings across 1 tasks. Total duration: 37.767 hours. Dataset size: 18.29 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004317

50

60

1

500

37.767

18.29 GB

Short overview of dataset ds004317 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004317 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004317
>>> dataset = DS004317(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004317(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004324(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004324.

Modality: Multisensory | Type: Affect | Subjects: Healthy

This dataset contains 26 subjects with 26 recordings across 1 tasks. Total duration: 19.216 hours. Dataset size: 2.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004324

26

28

1

500

19.216

2.46 GB

Short overview of dataset ds004324 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004324 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004324
>>> dataset = DS004324(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004324(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004347(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004347.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 24 subjects with 48 recordings across 1 tasks. Total duration: 6.389 hours. Dataset size: 2.69 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004347

24

64

1

128,512

6.389

2.69 GB

Short overview of dataset ds004347 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004347 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004347
>>> dataset = DS004347(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004347(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004348(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004348.

Modality: Sleep | Type: Sleep | Subjects: Healthy

This dataset contains 9 subjects with 18 recordings across 2 tasks. Total duration: 35.056 hours. Dataset size: 12.30 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004348

9

34

2

200

35.056

12.30 GB

Short overview of dataset ds004348 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004348 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004348
>>> dataset = DS004348(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004348(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004350(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004350.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 24 subjects with 240 recordings across 5 tasks. Total duration: 41.265 hours. Dataset size: 26.83 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004350

24

64

5

256

41.265

26.83 GB

Short overview of dataset ds004350 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004350 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004350
>>> dataset = DS004350(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004350(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004356(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004356.

Modality: Auditory | Type: Perception | Subjects: Healthy

This dataset contains 22 subjects with 24 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 213.08 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004356

22

34

1

10000

0

213.08 GB

Short overview of dataset ds004356 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004356 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004356
>>> dataset = DS004356(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004356(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004357(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004357.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 16 subjects with 16 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 69.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004357

16

63

1

1000

0

69.56 GB

Short overview of dataset ds004357 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004357 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004357
>>> dataset = DS004357(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004357(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004362(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004362.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 109 subjects with 1526 recordings across 1 tasks. Total duration: 48.592 hours. Dataset size: 11.14 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004362

109

64

1

128,160

48.592

11.14 GB

Short overview of dataset ds004362 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004362 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004362
>>> dataset = DS004362(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004362(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004367(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004367.

Modality: Visual | Type: Perception | Subjects: Schizophrenia/Psychosis

This dataset contains 40 subjects with 40 recordings across 1 tasks. Total duration: 24.81 hours. Dataset size: 27.98 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004367

40

68

1

1200

24.81

27.98 GB

Short overview of dataset ds004367 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004367 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004367
>>> dataset = DS004367(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004367(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004368(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004368.

Modality: Visual | Type: Perception | Subjects: Schizophrenia/Psychosis

This dataset contains 39 subjects with 40 recordings across 1 tasks. Total duration: 0.033 hours. Dataset size: 997.14 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004368

39

63

1

128

0.033

997.14 MB

Short overview of dataset ds004368 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004368 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004368
>>> dataset = DS004368(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004368(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004369(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004369.

Modality: Auditory | Type: Perception | Subjects: Healthy

This dataset contains 41 subjects with 41 recordings across 1 tasks. Total duration: 37.333 hours. Dataset size: 8.01 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004369

41

4

1

500

37.333

8.01 GB

Short overview of dataset ds004369 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004369 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004369
>>> dataset = DS004369(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004369(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004381(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004381.

Modality: Other | Type: Other | Subjects: Surgery

This dataset contains 18 subjects with 437 recordings across 1 tasks. Total duration: 11.965 hours. Dataset size: 12.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004381

18

4,5,7,8,10

1

20000

11.965

12.36 GB

Short overview of dataset ds004381 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004381 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004381
>>> dataset = DS004381(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004381(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004388(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004388.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 40 subjects with 399 recordings across 3 tasks. Total duration: 43.327 hours. Dataset size: 682.54 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004388

40

67

3

10000

43.327

682.54 GB

Short overview of dataset ds004388 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004388 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004388
>>> dataset = DS004388(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004388(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004389(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004389.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 26 subjects with 260 recordings across 4 tasks. Total duration: 30.932 hours. Dataset size: 376.50 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004389

26

42

4

10000

30.932

376.50 GB

Short overview of dataset ds004389 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004389 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004389
>>> dataset = DS004389(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004389(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004408(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004408.

Modality: Auditory | Type: Other | Subjects: Healthy

This dataset contains 19 subjects with 380 recordings across 1 tasks. Total duration: 20.026 hours. Dataset size: 18.70 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004408

19

128

1

512

20.026

18.70 GB

Short overview of dataset ds004408 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004408 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004408
>>> dataset = DS004408(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004408(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004444(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004444.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 30 subjects with 465 recordings across 1 tasks. Total duration: 55.687 hours. Dataset size: 48.62 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004444

30

129

1

1000

55.687

48.62 GB

Short overview of dataset ds004444 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004444 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004444
>>> dataset = DS004444(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004444(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004446(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004446.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 30 subjects with 237 recordings across 1 tasks. Total duration: 33.486 hours. Dataset size: 29.23 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004446

30

129

1

1000

33.486

29.23 GB

Short overview of dataset ds004446 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004446 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004446
>>> dataset = DS004446(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004446(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004447(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004447.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 22 subjects with 418 recordings across 1 tasks. Total duration: 23.554 hours. Dataset size: 20.73 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004447

22

128,129

1

1000

23.554

20.73 GB

Short overview of dataset ds004447 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004447 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004447
>>> dataset = DS004447(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004447(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004448(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004448.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 56 subjects with 280 recordings across 1 tasks. Total duration: 43.732 hours. Dataset size: 38.17 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004448

56

129

1

1000

43.732

38.17 GB

Short overview of dataset ds004448 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004448 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004448
>>> dataset = DS004448(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004448(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004460(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004460.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 20 subjects with 40 recordings across 1 tasks. Total duration: 27.494 hours. Dataset size: 61.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004460

20

160

1

1000

27.494

61.36 GB

Short overview of dataset ds004460 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004460 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004460
>>> dataset = DS004460(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004460(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004475(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004475.

Modality: Motor | Type: Motor | Subjects: Healthy

This dataset contains 30 subjects with 30 recordings across 1 tasks. Total duration: 26.899 hours. Dataset size: 112.74 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004475

30

113,115,118,119,120,122,123,124,125,126,127,128

1

512

26.899

112.74 GB

Short overview of dataset ds004475 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004475 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004475
>>> dataset = DS004475(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004475(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004477(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004477.

Modality: Multisensory | Type: Decision-making | Subjects: Healthy

This dataset contains 9 subjects with 9 recordings across 1 tasks. Total duration: 13.557 hours. Dataset size: 22.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004477

9

79

1

2048

13.557

22.34 GB

Short overview of dataset ds004477 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004477 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004477
>>> dataset = DS004477(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004477(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004504(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004504.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Dementia

This dataset contains 88 subjects with 88 recordings across 1 tasks. Total duration: 19.608 hours. Dataset size: 5.38 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004504

88

19

1

500

19.608

5.38 GB

Short overview of dataset ds004504 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004504 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004504
>>> dataset = DS004504(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004504(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004505.

Modality: Motor | Type: Motor | Subjects: Healthy

This dataset contains 25 subjects with 25 recordings across 1 tasks. Total duration: 30.398 hours. Dataset size: 522.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004505

25

120

1

250

30.398

522.56 GB

Short overview of dataset ds004505 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004505 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004505
>>> dataset = DS004505(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004505(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004511(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004511.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 45 subjects with 134 recordings across 3 tasks. Total duration: 48.922 hours. Dataset size: 202.28 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004511

45

139

3

3000

48.922

202.28 GB

Short overview of dataset ds004511 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004511 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004511
>>> dataset = DS004511(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004511(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004515.

Modality: Visual | Type: Affect | Subjects: Other

This dataset contains 54 subjects with 54 recordings across 1 tasks. Total duration: 20.61 hours. Dataset size: 9.48 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004515

54

64

1

500

20.61

9.48 GB

Short overview of dataset ds004515 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004515 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004515
>>> dataset = DS004515(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004515(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004519.

Modality: Visual | Type: Attention | Subjects: nan

This dataset contains 40 subjects with 40 recordings across 1 tasks. Total duration: 0.067 hours. Dataset size: 12.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004519

40

62

1

250

0.067

12.56 GB

Short overview of dataset ds004519 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004519 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004519
>>> dataset = DS004519(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004519(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004520.

Modality: Visual | Type: Memory | Subjects: nan

This dataset contains 33 subjects with 33 recordings across 1 tasks. Total duration: 0.055 hours. Dataset size: 10.41 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004520

33

62

1

250

0.055

10.41 GB

Short overview of dataset ds004520 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004520 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004520
>>> dataset = DS004520(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004520(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004521(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004521.

Modality: Visual | Type: Motor | Subjects: nan

This dataset contains 34 subjects with 34 recordings across 1 tasks. Total duration: 0.057 hours. Dataset size: 10.68 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004521

34

62

1

250

0.057

10.68 GB

Short overview of dataset ds004521 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004521 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004521
>>> dataset = DS004521(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004521(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004532(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004532.

Modality: Visual | Type: Learning | Subjects: Healthy

This dataset contains 110 subjects with 137 recordings across 1 tasks. Total duration: 49.651 hours. Dataset size: 22.09 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004532

110

64

1

500

49.651

22.09 GB

Short overview of dataset ds004532 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004532 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004532
>>> dataset = DS004532(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004532(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004554(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004554.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 16 subjects with 16 recordings across 1 tasks. Total duration: 0.024 hours. Dataset size: 8.79 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004554

16

99

1

1000

0.024

8.79 GB

Short overview of dataset ds004554 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004554 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004554
>>> dataset = DS004554(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004554(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004561(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004561.

Modality: Motor | Type: Perception | Subjects: Healthy

This dataset contains 23 subjects with 23 recordings across 1 tasks. Total duration: 11.379 hours. Dataset size: 97.96 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004561

23

62

1

10000

11.379

97.96 GB

Short overview of dataset ds004561 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004561 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004561
>>> dataset = DS004561(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004561(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004572(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004572.

Modality: Auditory | Type: Perception | Subjects: nan

This dataset contains 52 subjects with 516 recordings across 10 tasks. Total duration: 52.624 hours. Dataset size: 43.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004572

52

58

10

1000

52.624

43.56 GB

Short overview of dataset ds004572 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004572 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004572
>>> dataset = DS004572(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004572(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004574.

Modality: Multisensory | Type: Clinical/Intervention | Subjects: Parkinson’s

This dataset contains 146 subjects with 146 recordings across 1 tasks. Total duration: 31.043 hours. Dataset size: 13.48 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004574

146

63,64,66

1

500

31.043

13.48 GB

Short overview of dataset ds004574 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004574 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004574
>>> dataset = DS004574(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004574(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004577(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004577.

Modality: Sleep | Type: Clinical/Intervention | Subjects: Healthy

This dataset contains 103 subjects with 130 recordings across 1 tasks. Total duration: 22.974 hours. Dataset size: 652.76 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004577

103

19,21,24

1

200

22.974

652.76 MB

Short overview of dataset ds004577 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004577 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004577
>>> dataset = DS004577(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004577(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004579(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004579.

Modality: Visual | Type: Decision-making | Subjects: Parkinson’s

This dataset contains 139 subjects with 139 recordings across 1 tasks. Total duration: 55.703 hours. Dataset size: 24.12 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004579

139

63,64,66

1

500

55.703

24.12 GB

Short overview of dataset ds004579 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004579 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004579
>>> dataset = DS004579(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004579(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004580(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004580.

Modality: Visual | Type: Decision-making | Subjects: Parkinson’s

This dataset contains 147 subjects with 147 recordings across 1 tasks. Total duration: 36.514 hours. Dataset size: 15.84 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004580

147

63,64,66

1

500

36.514

15.84 GB

Short overview of dataset ds004580 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004580 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004580
>>> dataset = DS004580(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004580(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004582(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004582.

Modality: Visual | Type: Affect | Subjects: Healthy

This dataset contains 73 subjects with 73 recordings across 1 tasks. Total duration: 34.244 hours. Dataset size: 294.22 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004582

73

59

1

10000

34.244

294.22 GB

Short overview of dataset ds004582 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004582 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004582
>>> dataset = DS004582(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004582(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004584(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004584.

Modality: Resting State | Type: Clinical/Intervention | Subjects: Parkinson’s

This dataset contains 149 subjects with 149 recordings across 1 tasks. Total duration: 6.641 hours. Dataset size: 2.87 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004584

149

63,64,66

1

500

6.641

2.87 GB

Short overview of dataset ds004584 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004584 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004584
>>> dataset = DS004584(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004584(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004587(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004587.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 103 subjects with 114 recordings across 1 tasks. Total duration: 25.491 hours. Dataset size: 219.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004587

103

59

1

10000

25.491

219.34 GB

Short overview of dataset ds004587 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004587 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004587
>>> dataset = DS004587(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004587(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004588(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004588.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 42 subjects with 42 recordings across 1 tasks. Total duration: 4.957 hours. Dataset size: 601.76 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004588

42

24

1

300

4.957

601.76 MB

Short overview of dataset ds004588 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004588 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004588
>>> dataset = DS004588(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004588(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004595(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004595.

Modality: Visual | Type: Decision-making | Subjects: Other

This dataset contains 53 subjects with 53 recordings across 1 tasks. Total duration: 17.078 hours. Dataset size: 7.89 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004595

53

64

1

500

17.078

7.89 GB

Short overview of dataset ds004595 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004595 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004595
>>> dataset = DS004595(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004595(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004598(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004598.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 9 subjects with 20 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 26.66 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004598

9

1

10000

0

26.66 GB

Short overview of dataset ds004598 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004598 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004598
>>> dataset = DS004598(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004598(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004602.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 182 subjects with 546 recordings across 3 tasks. Total duration: 87.11 hours. Dataset size: 73.91 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004602

182

128

3

250,500

87.11

73.91 GB

Short overview of dataset ds004602 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004602 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004602
>>> dataset = DS004602(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004602(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004603(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004603.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 37 subjects with 37 recordings across 1 tasks. Total duration: 30.653 hours. Dataset size: 39.13 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004603

37

64

1

1024

30.653

39.13 GB

Short overview of dataset ds004603 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004603 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004603
>>> dataset = DS004603(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004603(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004621(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004621.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 42 subjects with 167 recordings across 4 tasks. Total duration: 0.0 hours. Dataset size: 77.39 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004621

42

4

1000

0

77.39 GB

Short overview of dataset ds004621 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004621 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004621
>>> dataset = DS004621(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004621(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004625(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004625.

Modality: Motor | Type: Attention | Subjects: nan

This dataset contains 32 subjects with 543 recordings across 9 tasks. Total duration: 28.397 hours. Dataset size: 62.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004625

32

120

9

500

28.397

62.46 GB

Short overview of dataset ds004625 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004625 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004625
>>> dataset = DS004625(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004625(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004626.

Modality: Visual | Type: Attention | Subjects: Other

This dataset contains 52 subjects with 52 recordings across 1 tasks. Total duration: 21.359 hours. Dataset size: 19.87 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004626

52

68

1

1000

21.359

19.87 GB

Short overview of dataset ds004626 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004626 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004626
>>> dataset = DS004626(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004626(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004635(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004635.

Modality: Multisensory | Type: Attention | Subjects: Healthy

This dataset contains 55 subjects with 55 recordings across 1 tasks. Total duration: 20.068 hours. Dataset size: 30.56 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004635

55

129

1

1000

20.068

30.56 GB

Short overview of dataset ds004635 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004635 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004635
>>> dataset = DS004635(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004635(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004657(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004657.

Modality: Motor | Type: Decision-making | Subjects: nan

This dataset contains 24 subjects with 119 recordings across 1 tasks. Total duration: 27.205 hours. Dataset size: 43.06 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004657

24

64

1

1024,8192

27.205

43.06 GB

Short overview of dataset ds004657 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004657 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004657
>>> dataset = DS004657(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004657(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004660(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004660.

Modality: Multisensory | Type: Attention | Subjects: Healthy

This dataset contains 21 subjects with 42 recordings across 1 tasks. Total duration: 23.962 hours. Dataset size: 7.25 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004660

21

32

1

2048,512

23.962

7.25 GB

Short overview of dataset ds004660 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004660 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004660
>>> dataset = DS004660(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004660(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004661(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004661.

Modality: Multisensory | Type: Memory | Subjects: nan

This dataset contains 17 subjects with 17 recordings across 1 tasks. Total duration: 10.137 hours. Dataset size: 1.40 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004661

17

64

1

128

10.137

1.40 GB

Short overview of dataset ds004661 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004661 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004661
>>> dataset = DS004661(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004661(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004718.

Modality: Auditory | Type: Learning | Subjects: Healthy

This dataset contains 51 subjects with 51 recordings across 1 tasks. Total duration: 21.836 hours. Dataset size: 108.98 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004718

51

64

1

1000

21.836

108.98 GB

Short overview of dataset ds004718 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004718 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004718
>>> dataset = DS004718(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004718(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004745(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004745.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 6 subjects with 6 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 242.08 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004745

6

1

1000

0

242.08 MB

Short overview of dataset ds004745 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004745 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004745
>>> dataset = DS004745(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004745(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004752.

Modality: Auditory | Type: Memory | Subjects: Epilepsy

This dataset contains 15 subjects with 136 recordings across 1 tasks. Total duration: 0.302 hours. Dataset size: 11.95 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004752

15

0,8,10,19,20,21,23

1

200,2000,4000,4096

0.302

11.95 GB

Short overview of dataset ds004752 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004752 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004752
>>> dataset = DS004752(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004752(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004771(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004771.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 61 subjects with 61 recordings across 1 tasks. Total duration: 0.022 hours. Dataset size: 1.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004771

61

34

1

256

0.022

1.36 GB

Short overview of dataset ds004771 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004771 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004771
>>> dataset = DS004771(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004771(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004784(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004784.

Modality: Motor | Type: Attention | Subjects: Healthy

This dataset contains 1 subjects with 6 recordings across 6 tasks. Total duration: 0.518 hours. Dataset size: 10.82 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004784

1

128

6

512

0.518

10.82 GB

Short overview of dataset ds004784 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004784 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004784
>>> dataset = DS004784(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004784(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004785.

Modality: Motor | Type: Motor | Subjects: Healthy

This dataset contains 17 subjects with 17 recordings across 1 tasks. Total duration: 0.019 hours. Dataset size: 351.17 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004785

17

32

1

500

0.019

351.17 MB

Short overview of dataset ds004785 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004785 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004785
>>> dataset = DS004785(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004785(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004796(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004796.

Modality: Visual/Resting State | Type: Memory/Resting state | Subjects: Other

This dataset contains 79 subjects with 235 recordings across 3 tasks. Total duration: 0.0 hours. Dataset size: 240.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004796

79

3

1000

0

240.21 GB

Short overview of dataset ds004796 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004796 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004796
>>> dataset = DS004796(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004796(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004802(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004802.

Modality: Visual | Type: Affect | Subjects: Other

This dataset contains 38 subjects with 38 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 29.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004802

38

65

1

2048,512

0

29.34 GB

Short overview of dataset ds004802 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004802 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004802
>>> dataset = DS004802(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004802(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004816(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004816.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 23.31 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004816

20

63

1

1000

0

23.31 GB

Short overview of dataset ds004816 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004816 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004816
>>> dataset = DS004816(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004816(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004817(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004817.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 25.34 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004817

20

63

1

1000

0

25.34 GB

Short overview of dataset ds004817 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004817 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004817
>>> dataset = DS004817(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004817(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004840(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004840.

Modality: Auditory | Type: Clinical/Intervention | Subjects: Other

This dataset contains 9 subjects with 51 recordings across 3 tasks. Total duration: 11.306 hours. Dataset size: 1.75 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004840

9

8

3

1024,256,512

11.306

1.75 GB

Short overview of dataset ds004840 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004840 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004840
>>> dataset = DS004840(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004840(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004841(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004841.

Modality: Multisensory | Type: Attention | Subjects: nan

This dataset contains 20 subjects with 147 recordings across 1 tasks. Total duration: 29.054 hours. Dataset size: 7.31 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004841

20

64

1

256

29.054

7.31 GB

Short overview of dataset ds004841 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004841 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004841
>>> dataset = DS004841(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004841(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004842(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004842.

Modality: Multisensory | Type: Attention | Subjects: nan

This dataset contains 14 subjects with 102 recordings across 1 tasks. Total duration: 20.102 hours. Dataset size: 5.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004842

14

64

1

256

20.102

5.21 GB

Short overview of dataset ds004842 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004842 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004842
>>> dataset = DS004842(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004842(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004843(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004843.

Modality: Visual | Type: Attention | Subjects: nan

This dataset contains 14 subjects with 92 recordings across 1 tasks. Total duration: 29.834 hours. Dataset size: 7.66 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004843

14

64

1

256

29.834

7.66 GB

Short overview of dataset ds004843 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004843 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004843
>>> dataset = DS004843(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004843(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004844.

Modality: Multisensory | Type: Decision-making | Subjects: nan

This dataset contains 17 subjects with 68 recordings across 1 tasks. Total duration: 21.252 hours. Dataset size: 22.33 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004844

17

64

1

1024

21.252

22.33 GB

Short overview of dataset ds004844 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004844 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004844
>>> dataset = DS004844(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004844(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004849.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004849

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004849 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004849 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004849
>>> dataset = DS004849(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004849(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004850(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004850.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004850

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004850 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004850 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004850
>>> dataset = DS004850(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004850(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004851(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004851.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 56.59 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004851

1

64

1

128

0.535

56.59 GB

Short overview of dataset ds004851 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004851 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004851
>>> dataset = DS004851(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004851(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004852(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004852.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004852

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004852 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004852 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004852
>>> dataset = DS004852(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004852(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004853(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004853.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004853

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004853 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004853 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004853
>>> dataset = DS004853(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004853(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004854(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004854.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004854

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004854 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004854 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004854
>>> dataset = DS004854(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004854(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004855(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004855.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 1 subjects with 1 recordings across 1 tasks. Total duration: 0.535 hours. Dataset size: 79.21 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004855

1

64

1

128

0.535

79.21 MB

Short overview of dataset ds004855 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004855 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004855
>>> dataset = DS004855(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004855(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004860(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004860.

Modality: Auditory | Type: Decision-making | Subjects: Healthy

This dataset contains 31 subjects with 31 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 3.79 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004860

31

32

1

2048,512

0

3.79 GB

Short overview of dataset ds004860 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004860 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004860
>>> dataset = DS004860(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004860(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004883(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004883.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 172 subjects with 516 recordings across 3 tasks. Total duration: 137.855 hours. Dataset size: 122.80 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004883

172

128

3

500

137.855

122.80 GB

Short overview of dataset ds004883 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004883 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004883
>>> dataset = DS004883(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004883(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004902(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004902.

Modality: Resting State | Type: Resting state | Subjects: Healthy

This dataset contains 71 subjects with 218 recordings across 2 tasks. Total duration: 18.118 hours. Dataset size: 8.29 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004902

71

61

2

500,5000

18.118

8.29 GB

Short overview of dataset ds004902 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004902 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004902
>>> dataset = DS004902(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004902(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004917(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004917.

Modality: Multisensory | Type: Decision-making | Subjects: Healthy

This dataset contains 24 subjects with 24 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 36.47 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004917

24

1

0

36.47 GB

Short overview of dataset ds004917 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004917 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004917
>>> dataset = DS004917(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004917(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004942(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004942.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 62 subjects with 62 recordings across 1 tasks. Total duration: 28.282 hours. Dataset size: 25.05 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004942

62

65

1

1000

28.282

25.05 GB

Short overview of dataset ds004942 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004942 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004942
>>> dataset = DS004942(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004942(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004951(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004951.

Modality: Tactile | Type: Learning | Subjects: nan

This dataset contains 11 subjects with 23 recordings across 1 tasks. Total duration: 29.563 hours. Dataset size: 22.00 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004951

11

63

1

1000

29.563

22.00 GB

Short overview of dataset ds004951 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004951 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004951
>>> dataset = DS004951(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004951(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004952(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004952.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 10 subjects with 245 recordings across 1 tasks. Total duration: 123.411 hours. Dataset size: 696.72 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004952

10

128

1

1000

123.411

696.72 GB

Short overview of dataset ds004952 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004952 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004952
>>> dataset = DS004952(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004952(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004980(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004980.

Modality: Visual | Type: Perception | Subjects: Healthy

This dataset contains 17 subjects with 17 recordings across 1 tasks. Total duration: 36.846 hours. Dataset size: 15.82 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004980

17

64

1

499.9911824,499.9912809,499.991385,499.9914353,499.9914553,499.9915179,499.9917272,499.9917286,499.9917378,499.9919292,499.9919367,499.9923017,499.9923795,500

36.846

15.82 GB

Short overview of dataset ds004980 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004980 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004980
>>> dataset = DS004980(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004980(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS004995(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds004995.

Modality: Visual | Type: Attention | Subjects: nan

This dataset contains 20 subjects with 20 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 27.60 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds004995

20

1

0

27.60 GB

Short overview of dataset ds004995 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds004995 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS004995
>>> dataset = DS004995(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS004995(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005021(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005021.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 36 subjects with 36 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 83.20 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005021

36

64

1

1024

0

83.20 GB

Short overview of dataset ds005021 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005021 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005021
>>> dataset = DS005021(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005021(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005028(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005028.

Modality: Visual | Type: Motor | Subjects: nan

This dataset contains 11 subjects with 66 recordings across 3 tasks. Total duration: 0.0 hours. Dataset size: 1.46 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005028

11

3

0

1.46 GB

Short overview of dataset ds005028 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005028 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005028
>>> dataset = DS005028(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005028(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005034.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 25 subjects with 100 recordings across 2 tasks. Total duration: 37.525 hours. Dataset size: 61.36 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005034

25

129

2

1000

37.525

61.36 GB

Short overview of dataset ds005034 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005034 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005034
>>> dataset = DS005034(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005034(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005048(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005048.

Modality: Auditory | Type: Attention | Subjects: Dementia

This dataset contains 35 subjects with 35 recordings across 1 tasks. Total duration: 5.203 hours. Dataset size: 355.91 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005048

35

1

250

5.203

355.91 MB

Short overview of dataset ds005048 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005048 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005048
>>> dataset = DS005048(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005048(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005079(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005079.

Modality: Multisensory | Type: Affect | Subjects: Healthy

This dataset contains 1 subjects with 60 recordings across 15 tasks. Total duration: 3.25 hours. Dataset size: 1.68 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005079

1

65

15

500

3.25

1.68 GB

Short overview of dataset ds005079 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005079 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005079
>>> dataset = DS005079(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005079(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005089(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005089.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 36 subjects with 36 recordings across 1 tasks. Total duration: 68.82 hours. Dataset size: 68.01 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005089

36

63

1

1000

68.82

68.01 GB

Short overview of dataset ds005089 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005089 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005089
>>> dataset = DS005089(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005089(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005095.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 48 subjects with 48 recordings across 1 tasks. Total duration: 16.901 hours. Dataset size: 14.28 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005095

48

63

1

1000

16.901

14.28 GB

Short overview of dataset ds005095 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005095 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005095
>>> dataset = DS005095(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005095(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005106.

Modality: Visual | Type: Attention | Subjects: Healthy

This dataset contains 42 subjects with 42 recordings across 1 tasks. Total duration: 0.012 hours. Dataset size: 12.62 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005106

42

32

1

500

0.012

12.62 GB

Short overview of dataset ds005106 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005106 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005106
>>> dataset = DS005106(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005106(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005114(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005114.

Modality: Visual | Type: Attention | Subjects: TBI

This dataset contains 91 subjects with 223 recordings across 1 tasks. Total duration: 125.701 hours. Dataset size: 56.47 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005114

91

64

1

500

125.701

56.47 GB

Short overview of dataset ds005114 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005114 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005114
>>> dataset = DS005114(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005114(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005121(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005121.

Modality: Sleep | Type: Memory | Subjects: Healthy

This dataset contains 34 subjects with 39 recordings across 1 tasks. Total duration: 41.498 hours. Dataset size: 9.04 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005121

34

58

1

512

41.498

9.04 GB

Short overview of dataset ds005121 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005121 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005121
>>> dataset = DS005121(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005121(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005131(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005131.

Modality: Auditory | Type: Attention/Memory | Subjects: Healthy

This dataset contains 58 subjects with 63 recordings across 2 tasks. Total duration: 52.035 hours. Dataset size: 22.35 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005131

58

64

2

500

52.035

22.35 GB

Short overview of dataset ds005131 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005131 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005131
>>> dataset = DS005131(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005131(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005170(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005170.

Modality: Visual | Type: other | Subjects: nan

This dataset contains 5 subjects with 225 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 261.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005170

5

1

0

261.77 GB

Short overview of dataset ds005170 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005170 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005170
>>> dataset = DS005170(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005170(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005185(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005185.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 20 subjects with 356 recordings across 3 tasks. Total duration: 0.0 hours. Dataset size: 783.25 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005185

20

8

3

500

0

783.25 GB

Short overview of dataset ds005185 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005185 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005185
>>> dataset = DS005185(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005185(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005189(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005189.

Modality: Visual | Type: Memory | Subjects: Healthy

This dataset contains 30 subjects with 30 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 17.03 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005189

30

61

1

1000

0

17.03 GB

Short overview of dataset ds005189 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005189 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005189
>>> dataset = DS005189(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005189(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005207(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005207.

Modality: Sleep | Type: Sleep | Subjects: Healthy

This dataset contains 20 subjects with 39 recordings across 1 tasks. Total duration: 422.881 hours. Dataset size: 69.12 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005207

20

6,10,12,14,15,16,17,18

1

128,250

422.881

69.12 GB

Short overview of dataset ds005207 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005207 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005207
>>> dataset = DS005207(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005207(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005262.

Modality: Visual | Type: other | Subjects: Healthy

This dataset contains 12 subjects with 186 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 688.75 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005262

12

1

0

688.75 MB

Short overview of dataset ds005262 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005262 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005262
>>> dataset = DS005262(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005262(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005273(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005273.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 33 subjects with 33 recordings across 1 tasks. Total duration: 58.055 hours. Dataset size: 44.42 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005273

33

63

1

1000

58.055

44.42 GB

Short overview of dataset ds005273 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005273 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005273
>>> dataset = DS005273(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005273(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005274(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005274.

Modality: nan | Type: nan | Subjects: Healthy

This dataset contains 22 subjects with 22 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 71.91 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005274

22

6

1

500

0

71.91 MB

Short overview of dataset ds005274 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005274 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005274
>>> dataset = DS005274(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005274(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005296(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005296.

Modality: Multisensory | Type: Decision-making | Subjects: Healthy

This dataset contains 62 subjects with 62 recordings across 1 tasks. Total duration: 37.205 hours. Dataset size: 8.53 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005296

62

1

500

37.205

8.53 GB

Short overview of dataset ds005296 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005296 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005296
>>> dataset = DS005296(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005296(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005305(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005305.

Modality: Visual | Type: Decision-making | Subjects: Healthy

This dataset contains 165 subjects with 165 recordings across 1 tasks. Total duration: 14.136 hours. Dataset size: 6.41 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005305

165

64

1

2048,512

14.136

6.41 GB

Short overview of dataset ds005305 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005305 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005305
>>> dataset = DS005305(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005305(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005307(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005307.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 7 subjects with 73 recordings across 1 tasks. Total duration: 1.335 hours. Dataset size: 18.59 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005307

7

72,104

1

10000

1.335

18.59 GB

Short overview of dataset ds005307 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005307 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005307
>>> dataset = DS005307(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005307(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005340(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005340.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 15 subjects with 15 recordings across 1 tasks. Total duration: 35.297 hours. Dataset size: 19.14 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005340

15

2

1

10000

35.297

19.14 GB

Short overview of dataset ds005340 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005340 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005340
>>> dataset = DS005340(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005340(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005342(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005342.

Modality: Visual | Type: Motor | Subjects: Healthy

This dataset contains 32 subjects with 32 recordings across 1 tasks. Total duration: 33.017 hours. Dataset size: 2.03 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005342

32

17

1

250

33.017

2.03 GB

Short overview of dataset ds005342 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005342 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005342
>>> dataset = DS005342(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005342(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005345(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005345.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 26 subjects with 26 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 405.13 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005345

26

64

1

500

0

405.13 GB

Short overview of dataset ds005345 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005345 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005345
>>> dataset = DS005345(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005345(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005363(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005363.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 43 subjects with 43 recordings across 1 tasks. Total duration: 43.085 hours. Dataset size: 17.71 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005363

43

64

1

1000

43.085

17.71 GB

Short overview of dataset ds005363 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005363 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005363
>>> dataset = DS005363(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005363(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005383(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005383.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 30 subjects with 240 recordings across 1 tasks. Total duration: 8.327 hours. Dataset size: 17.43 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005383

30

30

1

200

8.327

17.43 GB

Short overview of dataset ds005383 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005383 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005383
>>> dataset = DS005383(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005383(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005385(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005385.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 608 subjects with 3264 recordings across 2 tasks. Total duration: 169.62 hours. Dataset size: 74.07 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005385

608

64

2

1000

169.62

74.07 GB

Short overview of dataset ds005385 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005385 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005385
>>> dataset = DS005385(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005385(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005397(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005397.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 26 subjects with 26 recordings across 1 tasks. Total duration: 27.923 hours. Dataset size: 12.10 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005397

26

64

1

500

27.923

12.10 GB

Short overview of dataset ds005397 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005397 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005397
>>> dataset = DS005397(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005397(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005403(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005403.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 32 subjects with 32 recordings across 1 tasks. Total duration: 13.383 hours. Dataset size: 135.65 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005403

32

62

1

10000

13.383

135.65 GB

Short overview of dataset ds005403 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005403 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005403
>>> dataset = DS005403(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005403(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005406(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005406.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 29 subjects with 29 recordings across 1 tasks. Total duration: 15.452 hours. Dataset size: 13.26 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005406

29

63

1

1000

15.452

13.26 GB

Short overview of dataset ds005406 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005406 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005406
>>> dataset = DS005406(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005406(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005410(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005410.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 81 subjects with 81 recordings across 1 tasks. Total duration: 22.976 hours. Dataset size: 19.76 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005410

81

63

1

1000

22.976

19.76 GB

Short overview of dataset ds005410 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005410 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005410
>>> dataset = DS005410(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005410(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005416(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005416.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 23 subjects with 23 recordings across 1 tasks. Total duration: 24.68 hours. Dataset size: 21.30 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005416

23

64

1

1000

24.68

21.30 GB

Short overview of dataset ds005416 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005416 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005416
>>> dataset = DS005416(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005416(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005420(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005420.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 37 subjects with 72 recordings across 2 tasks. Total duration: 5.485 hours. Dataset size: 372.11 MB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005420

37

20

2

500

5.485

372.11 MB

Short overview of dataset ds005420 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005420 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005420
>>> dataset = DS005420(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005420(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005429(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005429.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 15 subjects with 61 recordings across 3 tasks. Total duration: 14.474 hours. Dataset size: 16.47 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005429

15

64

3

2500,5000

14.474

16.47 GB

Short overview of dataset ds005429 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005429 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005429
>>> dataset = DS005429(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005429(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005486(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005486.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 159 subjects with 445 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 371.04 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005486

159

1

25000,5000

0

371.04 GB

Short overview of dataset ds005486 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005486 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005486
>>> dataset = DS005486(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005486(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005505.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 136 subjects with 1342 recordings across 10 tasks. Total duration: 125.366 hours. Dataset size: 103.11 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005505

136

129

10

500

125.366

103.11 GB

Short overview of dataset ds005505 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005505 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005505
>>> dataset = DS005505(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005505(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005506.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 150 subjects with 1405 recordings across 10 tasks. Total duration: 127.896 hours. Dataset size: 111.88 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005506

150

129

10

500

127.896

111.88 GB

Short overview of dataset ds005506 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005506 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005506
>>> dataset = DS005506(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005506(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005507(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005507.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 184 subjects with 1812 recordings across 10 tasks. Total duration: 168.649 hours. Dataset size: 139.37 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005507

184

129

10

500

168.649

139.37 GB

Short overview of dataset ds005507 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005507 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005507
>>> dataset = DS005507(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005507(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005508(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005508.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 324 subjects with 3342 recordings across 10 tasks. Total duration: 269.281 hours. Dataset size: 229.81 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005508

324

129

10

500

269.281

229.81 GB

Short overview of dataset ds005508 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005508 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005508
>>> dataset = DS005508(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005508(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005509.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 330 subjects with 3326 recordings across 10 tasks. Total duration: 274.559 hours. Dataset size: 224.17 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005509

330

129

10

500

274.559

224.17 GB

Short overview of dataset ds005509 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005509 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005509
>>> dataset = DS005509(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005509(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005510(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005510.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 135 subjects with 1227 recordings across 10 tasks. Total duration: 112.464 hours. Dataset size: 90.80 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005510

135

129

10

500

112.464

90.80 GB

Short overview of dataset ds005510 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005510 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005510
>>> dataset = DS005510(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005510(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005511(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005511.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 381 subjects with 3100 recordings across 10 tasks. Total duration: 285.629 hours. Dataset size: 244.83 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005511

381

6,129

10

500

285.629

244.83 GB

Short overview of dataset ds005511 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005511 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005511
>>> dataset = DS005511(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005511(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005512(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005512.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 257 subjects with 2320 recordings across 10 tasks. Total duration: 196.205 hours. Dataset size: 157.19 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005512

257

129

10

500

196.205

157.19 GB

Short overview of dataset ds005512 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005512 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005512
>>> dataset = DS005512(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005512(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005514(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005514.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 295 subjects with 2885 recordings across 10 tasks. Total duration: 213.008 hours. Dataset size: 185.03 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005514

295

129

10

500

213.008

185.03 GB

Short overview of dataset ds005514 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005514 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005514
>>> dataset = DS005514(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005514(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005515.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 533 subjects with 2516 recordings across 8 tasks. Total duration: 198.849 hours. Dataset size: 160.55 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005515

533

129

8

500

198.849

160.55 GB

Short overview of dataset ds005515 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005515 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005515
>>> dataset = DS005515(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005515(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005516.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 430 subjects with 3397 recordings across 8 tasks. Total duration: 256.932 hours. Dataset size: 219.39 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005516

430

129

8

500

256.932

219.39 GB

Short overview of dataset ds005516 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005516 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005516
>>> dataset = DS005516(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005516(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005520.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 23 subjects with 69 recordings across 3 tasks. Total duration: 60.73 hours. Dataset size: 275.98 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005520

23

67

3

1000

60.73

275.98 GB

Short overview of dataset ds005520 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005520 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005520
>>> dataset = DS005520(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005520(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005530(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005530.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 17 subjects with 21 recordings across 1 tasks. Total duration: 154.833 hours. Dataset size: 6.47 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005530

17

10

1

500

154.833

6.47 GB

Short overview of dataset ds005530 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005530 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005530
>>> dataset = DS005530(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005530(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005540(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005540.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 59 subjects with 103 recordings across 1 tasks. Total duration: 0.0 hours. Dataset size: 70.40 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005540

59

64

1

1200,600

0

70.40 GB

Short overview of dataset ds005540 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005540 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005540
>>> dataset = DS005540(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005540(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005555.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 128 subjects with 256 recordings across 1 tasks. Total duration: 2002.592 hours. Dataset size: 33.45 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005555

128

2,8,9,11,12,13

1

256

2002.59

33.45 GB

Short overview of dataset ds005555 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005555 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005555
>>> dataset = DS005555(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005555(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005565(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005565.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 24 subjects with 24 recordings across 1 tasks. Total duration: 11.436 hours. Dataset size: 2.62 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005565

24

1

500

11.436

2.62 GB

Short overview of dataset ds005565 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005565 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005565
>>> dataset = DS005565(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005565(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005571(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005571.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 24 subjects with 45 recordings across 2 tasks. Total duration: 0.0 hours. Dataset size: 62.77 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005571

24

64

2

5000

0

62.77 GB

Short overview of dataset ds005571 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005571 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005571
>>> dataset = DS005571(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005571(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005586(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005586.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 23 subjects with 23 recordings across 1 tasks. Total duration: 33.529 hours. Dataset size: 28.68 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005586

23

60

1

1000

33.529

28.68 GB

Short overview of dataset ds005586 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005586 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005586
>>> dataset = DS005586(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005586(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005594(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005594.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 16 subjects with 16 recordings across 1 tasks. Total duration: 12.934 hours. Dataset size: 10.89 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005594

16

64

1

1000

12.934

10.89 GB

Short overview of dataset ds005594 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005594 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005594
>>> dataset = DS005594(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005594(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005620(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005620.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 21 subjects with 202 recordings across 3 tasks. Total duration: 21.811 hours. Dataset size: 77.30 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005620

21

64,65

3

5000

21.811

77.30 GB

Short overview of dataset ds005620 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005620 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005620
>>> dataset = DS005620(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005620(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005672(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005672.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 3 subjects with 3 recordings across 1 tasks. Total duration: 4.585 hours. Dataset size: 4.23 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005672

3

65,69

1

1000

4.585

4.23 GB

Short overview of dataset ds005672 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005672 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005672
>>> dataset = DS005672(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005672(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005688(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005688.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 20 subjects with 89 recordings across 5 tasks. Total duration: 2.502 hours. Dataset size: 8.42 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005688

20

4

5

10000,20000

2.502

8.42 GB

Short overview of dataset ds005688 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005688 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005688
>>> dataset = DS005688(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005688(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005692(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005692.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 30 subjects with 59 recordings across 1 tasks. Total duration: 112.206 hours. Dataset size: 92.81 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005692

30

24

1

5000

112.206

92.81 GB

Short overview of dataset ds005692 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005692 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005692
>>> dataset = DS005692(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005692(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005697(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005697.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 50 subjects with 50 recordings across 1 tasks. Total duration: 77.689 hours. Dataset size: 66.58 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005697

50

65,69

1

1000

77.689

66.58 GB

Short overview of dataset ds005697 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005697 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005697
>>> dataset = DS005697(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005697(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005779(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005779.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 19 subjects with 250 recordings across 16 tasks. Total duration: 16.65 hours. Dataset size: 88.67 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005779

19

64,67,70

16

5000

16.65

88.67 GB

Short overview of dataset ds005779 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005779 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005779
>>> dataset = DS005779(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005779(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005787.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 19 subjects with 448 recordings across 1 tasks. Total duration: 23.733 hours. Dataset size: 27.09 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005787

19

64,66

1

1000,500

23.733

27.09 GB

Short overview of dataset ds005787 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005787 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005787
>>> dataset = DS005787(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005787(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005795(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005795.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 34 subjects with 39 recordings across 2 tasks. Total duration: 0.0 hours. Dataset size: 6.43 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005795

34

72

2

500

0

6.43 GB

Short overview of dataset ds005795 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005795 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005795
>>> dataset = DS005795(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005795(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005811(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005811.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 19 subjects with 448 recordings across 1 tasks. Total duration: 23.733 hours. Dataset size: 24.12 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005811

19

62

1

1000,500

23.733

24.12 GB

Short overview of dataset ds005811 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005811 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005811
>>> dataset = DS005811(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005811(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005815(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005815.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 26 subjects with 137 recordings across 4 tasks. Total duration: 38.618 hours. Dataset size: 9.91 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005815

26

30

4

1000,500

38.618

9.91 GB

Short overview of dataset ds005815 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005815 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005815
>>> dataset = DS005815(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005815(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005863(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005863.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 127 subjects with 357 recordings across 4 tasks. Total duration: 0.0 hours. Dataset size: 10.59 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005863

127

27

4

500

0

10.59 GB

Short overview of dataset ds005863 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005863 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005863
>>> dataset = DS005863(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005863(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005866(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005866.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 60 subjects with 60 recordings across 1 tasks. Total duration: 15.976 hours. Dataset size: 3.57 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005866

60

1

500

15.976

3.57 GB

Short overview of dataset ds005866 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005866 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005866
>>> dataset = DS005866(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005866(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005868(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005868.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 48 subjects with 48 recordings across 1 tasks. Total duration: 13.094 hours. Dataset size: 2.93 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005868

48

1

500

13.094

2.93 GB

Short overview of dataset ds005868 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005868 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005868
>>> dataset = DS005868(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005868(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005873(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005873.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 125 subjects with 2850 recordings across 1 tasks. Total duration: 11935.09 hours. Dataset size: 117.21 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005873

125

2

1

256

11935.1

117.21 GB

Short overview of dataset ds005873 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005873 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005873
>>> dataset = DS005873(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005873(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.DS005876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]

Bases: EEGDashDataset

OpenNeuro dataset ds005876.

Modality: nan | Type: nan | Subjects: nan

This dataset contains 29 subjects with 29 recordings across 1 tasks. Total duration: 16.017 hours. Dataset size: 7.61 GB.

dataset

#Subj

#Chan

#Classes

Freq(Hz)

Duration(H)

Size

ds005876

29

32

1

1000

16.017

7.61 GB

Short overview of dataset ds005876 more details in the NeMAR documentation.

This dataset class provides convenient access to the ds005876 dataset through the EEGDash interface. It inherits all functionality from EEGDashDataset with the dataset filter pre-configured.

Parameters:
  • cache_dir (str) – Directory to cache downloaded data.

  • query (dict, optional) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key dataset.

  • s3_bucket (str, optional) – Base S3 bucket used to locate the data.

  • **kwargs – Additional arguments passed to the base dataset class.

See also

EEGDashDataset

Base dataset class with full API documentation

Notes

More details available in the NEMAR documentation.

Examples

Basic usage:

>>> from eegdash.dataset import DS005876
>>> dataset = DS005876(cache_dir="./data")
>>> print(f"Number of recordings: {len(dataset)}")

Load a specific recording:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")

Filter by additional criteria:

>>> # Get subset with specific task or subject
>>> filtered_dataset = DS005876(
...     cache_dir="./data",
...     query={"task": "RestingState"}  # if applicable
... )

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • cache_dir – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.

cumulative_sizes: list[int]
datasets: list[Dataset[_T_co]]
class eegdash.dataset.dataset.EEGChallengeDataset(release: str, cache_dir: str, mini: bool = True, query: dict | None = None, s3_bucket: str | None = 's3://nmdatasets/NeurIPS25', **kwargs)[source]

Bases: EEGDashDataset

A dataset helper for the EEG 2025 Challenge.

This class simplifies access to the EEG 2025 Challenge datasets. It is a specialized version of EEGDashDataset that is pre-configured for the challenge’s data releases. It automatically maps a release name (e.g., “R1”) to the corresponding OpenNeuro dataset and handles the selection of subject subsets (e.g., “mini” release).

Parameters:
  • release (str) – The name of the challenge release to load. Must be one of the keys in RELEASE_TO_OPENNEURO_DATASET_MAP (e.g., “R1”, “R2”, …, “R11”).

  • cache_dir (str) – The local directory where the dataset will be downloaded and cached.

  • mini (bool, default True) – If True, the dataset is restricted to the official “mini” subset of subjects for the specified release. If False, all subjects for the release are included.

  • query (dict, optional) – An additional MongoDB-style query to apply as a filter. This query is combined with the release and subject filters using a logical AND. The query must not contain the dataset key, as this is determined by the release parameter.

  • s3_bucket (str, optional) – The base S3 bucket URI where the challenge data is stored. Defaults to the official challenge bucket.

  • **kwargs – Additional keyword arguments that are passed directly to the EEGDashDataset constructor.

Raises:

ValueError – If the specified release is unknown, or if the query argument contains a dataset key. Also raised if mini is True and a requested subject is not part of the official mini-release subset.

See also

EEGDashDataset

The base class for creating datasets from queries.

Examples

Basic usage with dataset and subject filtering:

>>> from eegdash import EEGDashDataset
>>> dataset = EEGDashDataset(
...     cache_dir="./data",
...     dataset="ds002718",
...     subject="012"
... )
>>> print(f"Number of recordings: {len(dataset)}")

Filter by multiple subjects and specific task:

>>> subjects = ["012", "013", "014"]
>>> dataset = EEGDashDataset(
...     cache_dir="./data",
...     dataset="ds002718",
...     subject=subjects,
...     task="RestingState"
... )

Load and inspect EEG data from recordings:

>>> if len(dataset) > 0:
...     recording = dataset[0]
...     raw = recording.load()
...     print(f"Sampling rate: {raw.info['sfreq']} Hz")
...     print(f"Number of channels: {len(raw.ch_names)}")
...     print(f"Duration: {raw.times[-1]:.1f} seconds")

Advanced filtering with raw MongoDB queries:

>>> from eegdash import EEGDashDataset
>>> query = {
...     "dataset": "ds002718",
...     "subject": {"$in": ["012", "013"]},
...     "task": "RestingState"
... }
>>> dataset = EEGDashDataset(cache_dir="./data", query=query)

Working with dataset collections and braindecode integration:

>>> # EEGDashDataset is a braindecode BaseConcatDataset
>>> for i, recording in enumerate(dataset):
...     if i >= 2:  # limit output
...         break
...     print(f"Recording {i}: {recording.description}")
...     raw = recording.load()
...     print(f"  Channels: {len(raw.ch_names)}, Duration: {raw.times[-1]:.1f}s")

Initialize self. See help(type(self)) for accurate signature.

Parameters:
  • release – The description is missing.

  • cache_dir – The description is missing.

  • mini – The description is missing.

  • query – The description is missing.

  • s3_bucket – The description is missing.

  • **kwargs – The description is missing.