eegdash.dataset.dataset module#
- class eegdash.dataset.dataset.DS000117(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000117. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 104; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000117 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000117 DOI: https://doi.org/10.18112/openneuro.ds000117.v1.1.0
Examples
>>> from eegdash.dataset import DS000117 >>> dataset = DS000117(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS000246(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000246. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 57; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000246 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000246 DOI: https://doi.org/10.18112/openneuro.ds000246.v1.0.1
Examples
>>> from eegdash.dataset import DS000246 >>> dataset = DS000246(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS000247(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000247. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 282; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000247 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000247 DOI: https://doi.org/10.18112/openneuro.ds000247.v1.0.2
Examples
>>> from eegdash.dataset import DS000247 >>> dataset = DS000247(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS000248(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds000248. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds000248 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds000248 DOI: https://doi.org/10.18112/openneuro.ds000248.v1.2.4
Examples
>>> from eegdash.dataset import DS000248 >>> dataset = DS000248(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS001785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001785. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001785 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001785 DOI: https://doi.org/10.18112/openneuro.ds001785.v1.1.1
Examples
>>> from eegdash.dataset import DS001785 >>> dataset = DS001785(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS001787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001787. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001787 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001787 DOI: https://doi.org/10.18112/openneuro.ds001787.v1.1.1
Examples
>>> from eegdash.dataset import DS001787 >>> dataset = DS001787(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS001810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001810. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 263; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001810 DOI: https://doi.org/10.18112/openneuro.ds001810.v1.1.0
Examples
>>> from eegdash.dataset import DS001810 >>> dataset = DS001810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS001849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001849. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 120; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001849 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001849 DOI: https://doi.org/10.18112/openneuro.ds001849.v1.0.2
Examples
>>> from eegdash.dataset import DS001849 >>> dataset = DS001849(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS001971(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds001971. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 273; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds001971 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds001971 DOI: https://doi.org/10.18112/openneuro.ds001971.v1.1.1
Examples
>>> from eegdash.dataset import DS001971 >>> dataset = DS001971(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002001(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002001. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 1006; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002001 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002001 DOI: https://doi.org/10.18112/openneuro.ds002001.v1.0.0
Examples
>>> from eegdash.dataset import DS002001 >>> dataset = DS002001(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002034. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 167; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002034 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002034 DOI: https://doi.org/10.18112/openneuro.ds002034.v1.0.3
Examples
>>> from eegdash.dataset import DS002034 >>> dataset = DS002034(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002094(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002094. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 43; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002094 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002094
Examples
>>> from eegdash.dataset import DS002094 >>> dataset = DS002094(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002158(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002158. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 117; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002158 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002158 DOI: https://doi.org/10.18112/openneuro.ds002158.v1.0.2
Examples
>>> from eegdash.dataset import DS002158 >>> dataset = DS002158(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002181(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002181. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 226; recordings: 226; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002181 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002181 DOI: https://doi.org/mockDOI
Examples
>>> from eegdash.dataset import DS002181 >>> dataset = DS002181(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002218(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002218. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002218 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002218 DOI: https://doi.org/mockDOI
Examples
>>> from eegdash.dataset import DS002218 >>> dataset = DS002218(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002312(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002312. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002312 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002312 DOI: https://doi.org/10.18112/openneuro.ds002312.v1.0.0
Examples
>>> from eegdash.dataset import DS002312 >>> dataset = DS002312(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002336(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002336. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 54; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002336 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002336 DOI: https://doi.org/10.18112/openneuro.ds002336.v2.0.2
Examples
>>> from eegdash.dataset import DS002336 >>> dataset = DS002336(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002338(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002338. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 85; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002338 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002338 DOI: https://doi.org/10.18112/openneuro.ds002338.v2.0.1
Examples
>>> from eegdash.dataset import DS002338 >>> dataset = DS002338(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002550(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002550. Modality:meg; Experiment type:Unknown; Subject type:Working memory. Subjects: 23; recordings: 12754; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002550 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002550 DOI: https://doi.org/10.18112/openneuro.ds002550.v1.0.1
Examples
>>> from eegdash.dataset import DS002550 >>> dataset = DS002550(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002578(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002578. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 2; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002578 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002578 DOI: https://doi.org/10.18112/openneuro.ds002578.v1.1.0
Examples
>>> from eegdash.dataset import DS002578 >>> dataset = DS002578(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002680(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002680. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 350; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002680 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002680 DOI: https://doi.org/10.18112/openneuro.ds002680.v1.2.0
Examples
>>> from eegdash.dataset import DS002680 >>> dataset = DS002680(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002691(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002691. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002691 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002691 DOI: https://doi.org/10.18112/openneuro.ds002691.v1.1.0
Examples
>>> from eegdash.dataset import DS002691 >>> dataset = DS002691(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002712(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002712. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 82; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002712 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002712 DOI: https://doi.org/10.18112/openneuro.ds002712.v1.0.1
Examples
>>> from eegdash.dataset import DS002712 >>> dataset = DS002712(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002718. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002718 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002718 DOI: https://doi.org/10.18112/openneuro.ds002718.v1.1.0
Examples
>>> from eegdash.dataset import DS002718 >>> dataset = DS002718(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002720(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002720. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 165; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002720 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002720 DOI: https://doi.org/10.18112/openneuro.ds002720.v1.0.1
Examples
>>> from eegdash.dataset import DS002720 >>> dataset = DS002720(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002721(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002721. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 185; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002721 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002721 DOI: https://doi.org/10.18112/openneuro.ds002721.v1.0.2
Examples
>>> from eegdash.dataset import DS002721 >>> dataset = DS002721(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002722(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002722. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 94; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002722 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002722 DOI: https://doi.org/10.18112/openneuro.ds002722.v1.0.1
Examples
>>> from eegdash.dataset import DS002722 >>> dataset = DS002722(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002723(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002723. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 44; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002723 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002723 DOI: https://doi.org/10.18112/openneuro.ds002723.v1.1.0
Examples
>>> from eegdash.dataset import DS002723 >>> dataset = DS002723(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002724(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002724. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 96; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002724 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002724 DOI: https://doi.org/10.18112/openneuro.ds002724.v1.0.1
Examples
>>> from eegdash.dataset import DS002724 >>> dataset = DS002724(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002725(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002725. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 105; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002725 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002725 DOI: https://doi.org/10.18112/openneuro.ds002725.v1.0.0
Examples
>>> from eegdash.dataset import DS002725 >>> dataset = DS002725(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002761(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002761. Modality:meg; Experiment type:Unknown; Subject type:MEG. Subjects: 26; recordings: 2806; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002761 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002761 DOI: https://doi.org/10.18112/openneuro.ds002761.v1.1.2
Examples
>>> from eegdash.dataset import DS002761 >>> dataset = DS002761(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002778(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002778. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 46; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002778 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002778 DOI: https://doi.org/10.18112/openneuro.ds002778.v1.0.5
Examples
>>> from eegdash.dataset import DS002778 >>> dataset = DS002778(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002791(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002791. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 92; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002791 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002791 DOI: https://doi.org/10.18112/openneuro.ds002791.v1.0.0
Examples
>>> from eegdash.dataset import DS002791 >>> dataset = DS002791(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002799(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002799. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 16824; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002799 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002799 DOI: https://doi.org/10.18112/openneuro.ds002799.v1.0.4
Examples
>>> from eegdash.dataset import DS002799 >>> dataset = DS002799(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002814(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002814. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 168; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002814 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002814 DOI: https://doi.org/10.18112/openneuro.ds002814.v1.3.0
Examples
>>> from eegdash.dataset import DS002814 >>> dataset = DS002814(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002833(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002833. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002833 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002833 DOI: https://doi.org/10.18112/openneuro.ds002833.v1.0.0
Examples
>>> from eegdash.dataset import DS002833 >>> dataset = DS002833(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002885(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002885. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 7; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002885 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002885 DOI: https://doi.org/10.18112/openneuro.ds002885.v1.0.1
Examples
>>> from eegdash.dataset import DS002885 >>> dataset = DS002885(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002893(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002893. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 49; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002893 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002893 DOI: https://doi.org/10.18112/openneuro.ds002893.v2.0.0
Examples
>>> from eegdash.dataset import DS002893 >>> dataset = DS002893(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS002908(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds002908. Modality:meg; Experiment type:Unknown; Subject type:Decision Making. Subjects: 14; recordings: 539; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds002908 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds002908 DOI: https://doi.org/10.18112/openneuro.ds002908.v1.0.0
Examples
>>> from eegdash.dataset import DS002908 >>> dataset = DS002908(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003004(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003004. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003004 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003004 DOI: https://doi.org/10.18112/openneuro.ds003004.v1.1.1
Examples
>>> from eegdash.dataset import DS003004 >>> dataset = DS003004(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003029(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003029. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 35; recordings: 106; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003029 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003029 DOI: https://doi.org/10.18112/openneuro.ds003029.v1.0.5
Examples
>>> from eegdash.dataset import DS003029 >>> dataset = DS003029(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003039(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003039. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003039 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003039 DOI: https://doi.org/10.18112/openneuro.ds003039.v1.0.2
Examples
>>> from eegdash.dataset import DS003039 >>> dataset = DS003039(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003061(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003061. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003061 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003061 DOI: https://doi.org/10.18112/openneuro.ds003061.v1.1.0
Examples
>>> from eegdash.dataset import DS003061 >>> dataset = DS003061(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003078(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003078. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 72; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003078 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003078 DOI: https://doi.org/10.18112/openneuro.ds003078.v1.0.0
Examples
>>> from eegdash.dataset import DS003078 >>> dataset = DS003078(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003082(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003082. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 82; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003082 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003082
Examples
>>> from eegdash.dataset import DS003082 >>> dataset = DS003082(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003104. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003104 DOI: https://doi.org/10.18112/openneuro.ds003104.v1.0.0
Examples
>>> from eegdash.dataset import DS003104 >>> dataset = DS003104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003190(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003190. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 384; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003190 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003190 DOI: https://doi.org/10.18112/openneuro.ds003190.v1.0.1
Examples
>>> from eegdash.dataset import DS003190 >>> dataset = DS003190(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003194(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003194. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 29; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003194 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003194 DOI: https://doi.org/10.18112/openneuro.ds003194.v1.0.3
Examples
>>> from eegdash.dataset import DS003194 >>> dataset = DS003194(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003195(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003195. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 20; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003195 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003195 DOI: https://doi.org/10.18112/openneuro.ds003195.v1.0.3
Examples
>>> from eegdash.dataset import DS003195 >>> dataset = DS003195(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003343(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003343. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 59; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003343 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003343 DOI: https://doi.org/10.18112/openneuro.ds003343.v2.0.1
Examples
>>> from eegdash.dataset import DS003343 >>> dataset = DS003343(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003352(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003352. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 138; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003352 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003352 DOI: https://doi.org/10.18112/openneuro.ds003352.v1.0.0
Examples
>>> from eegdash.dataset import DS003352 >>> dataset = DS003352(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003374(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003374. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003374 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003374 DOI: https://doi.org/10.18112/openneuro.ds003374.v1.1.1
Examples
>>> from eegdash.dataset import DS003374 >>> dataset = DS003374(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003392(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003392. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 33; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003392 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003392 DOI: https://doi.org/10.18112/openneuro.ds003392.v1.0.4
Examples
>>> from eegdash.dataset import DS003392 >>> dataset = DS003392(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003420(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003420. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 92; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003420 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003420 DOI: https://doi.org/10.18112/openneuro.ds003420.v1.0.2
Examples
>>> from eegdash.dataset import DS003420 >>> dataset = DS003420(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003421(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003421. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003421 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003421 DOI: https://doi.org/10.18112/openneuro.ds003421.v1.0.2
Examples
>>> from eegdash.dataset import DS003421 >>> dataset = DS003421(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003458(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003458. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003458 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003458 DOI: https://doi.org/10.18112/openneuro.ds003458.v1.1.0
Examples
>>> from eegdash.dataset import DS003458 >>> dataset = DS003458(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003474(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003474. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 122; recordings: 122; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003474 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003474 DOI: https://doi.org/10.18112/openneuro.ds003474.v1.1.0
Examples
>>> from eegdash.dataset import DS003474 >>> dataset = DS003474(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003478(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003478. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 122; recordings: 243; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003478 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003478 DOI: https://doi.org/10.18112/openneuro.ds003478.v1.1.0
Examples
>>> from eegdash.dataset import DS003478 >>> dataset = DS003478(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003483(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003483. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 41; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003483 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003483 DOI: https://doi.org/10.18112/openneuro.ds003483.v1.0.2
Examples
>>> from eegdash.dataset import DS003483 >>> dataset = DS003483(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003490(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003490. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 75; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003490 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003490 DOI: https://doi.org/10.18112/openneuro.ds003490.v1.1.0
Examples
>>> from eegdash.dataset import DS003490 >>> dataset = DS003490(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003498(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003498. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 385; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003498 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003498 DOI: https://doi.org/10.18112/openneuro.ds003498.v1.0.1
Examples
>>> from eegdash.dataset import DS003498 >>> dataset = DS003498(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 37; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003505 DOI: https://doi.org/10.18112/openneuro.ds003505.v1.1.1
Examples
>>> from eegdash.dataset import DS003505 >>> dataset = DS003505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003506. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003506 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003506 DOI: https://doi.org/10.18112/openneuro.ds003506.v1.1.0
Examples
>>> from eegdash.dataset import DS003506 >>> dataset = DS003506(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003509. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003509 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003509 DOI: https://doi.org/10.18112/openneuro.ds003509.v1.1.0
Examples
>>> from eegdash.dataset import DS003509 >>> dataset = DS003509(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003516. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003516 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003516 DOI: https://doi.org/10.18112/openneuro.ds003516.v1.1.1
Examples
>>> from eegdash.dataset import DS003516 >>> dataset = DS003516(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003517(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003517. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003517 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003517 DOI: https://doi.org/10.18112/openneuro.ds003517.v1.1.0
Examples
>>> from eegdash.dataset import DS003517 >>> dataset = DS003517(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003518(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003518. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 137; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003518 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003518 DOI: https://doi.org/10.18112/openneuro.ds003518.v1.1.0
Examples
>>> from eegdash.dataset import DS003518 >>> dataset = DS003518(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003519. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 54; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003519 DOI: https://doi.org/10.18112/openneuro.ds003519.v1.1.0
Examples
>>> from eegdash.dataset import DS003519 >>> dataset = DS003519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003522(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003522. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 96; recordings: 200; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003522 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003522 DOI: https://doi.org/10.18112/openneuro.ds003522.v1.1.0
Examples
>>> from eegdash.dataset import DS003522 >>> dataset = DS003522(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003523(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003523. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 91; recordings: 221; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003523 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003523 DOI: https://doi.org/10.18112/openneuro.ds003523.v1.1.0
Examples
>>> from eegdash.dataset import DS003523 >>> dataset = DS003523(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003555. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003555 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003555 DOI: https://doi.org/10.18112/openneuro.ds003555.v1.0.1
Examples
>>> from eegdash.dataset import DS003555 >>> dataset = DS003555(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003568(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003568. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 3710; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003568 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003568 DOI: https://doi.org/10.18112/openneuro.ds003568.v1.0.4
Examples
>>> from eegdash.dataset import DS003568 >>> dataset = DS003568(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003570(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003570. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003570 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003570 DOI: https://doi.org/10.18112/openneuro.ds003570.v1.0.0
Examples
>>> from eegdash.dataset import DS003570 >>> dataset = DS003570(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003574. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003574 DOI: https://doi.org/10.18112/openneuro.ds003574.v1.0.2
Examples
>>> from eegdash.dataset import DS003574 >>> dataset = DS003574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003602. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 118; recordings: 699; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003602 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003602 DOI: https://doi.org/10.18112/openneuro.ds003602.v1.0.0
Examples
>>> from eegdash.dataset import DS003602 >>> dataset = DS003602(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003620(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003620. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 44; recordings: 100; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003620 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003620 DOI: https://doi.org/10.18112/openneuro.ds003620.v1.1.1
Examples
>>> from eegdash.dataset import DS003620 >>> dataset = DS003620(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003626. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003626 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003626 DOI: https://doi.org/10.18112/openneuro.ds003626.v2.0.0
Examples
>>> from eegdash.dataset import DS003626 >>> dataset = DS003626(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003633(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003633. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 96; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003633 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003633 DOI: https://doi.org/10.18112/openneuro.ds003633.v1.0.3
Examples
>>> from eegdash.dataset import DS003633 >>> dataset = DS003633(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003638(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003638. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 57; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003638 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003638 DOI: https://doi.org/10.18112/openneuro.ds003638.v1.0.0
Examples
>>> from eegdash.dataset import DS003638 >>> dataset = DS003638(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003645(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003645. Modality:eeg, meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 224; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003645 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003645 DOI: https://doi.org/10.18112/openneuro.ds003645.v2.0.2
Examples
>>> from eegdash.dataset import DS003645 >>> dataset = DS003645(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003655(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003655. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 156; recordings: 156; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003655 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003655 DOI: https://doi.org/10.18112/openneuro.ds003655.v1.0.0
Examples
>>> from eegdash.dataset import DS003655 >>> dataset = DS003655(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003670(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003670. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003670 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003670 DOI: https://doi.org/10.18112/openneuro.ds003670.v1.1.0
Examples
>>> from eegdash.dataset import DS003670 >>> dataset = DS003670(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003682(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003682. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 336; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003682 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003682 DOI: https://doi.org/10.18112/openneuro.ds003682.v1.0.0
Examples
>>> from eegdash.dataset import DS003682 >>> dataset = DS003682(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003688(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003688. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 107; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003688 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003688 DOI: https://doi.org/10.18112/openneuro.ds003688.v1.0.7
Examples
>>> from eegdash.dataset import DS003688 >>> dataset = DS003688(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003690(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003690. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 75; recordings: 375; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003690 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003690 DOI: https://doi.org/10.18112/openneuro.ds003690.v1.0.0
Examples
>>> from eegdash.dataset import DS003690 >>> dataset = DS003690(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003694(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003694. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 132; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003694 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003694 DOI: https://doi.org/10.18112/openneuro.ds003694.v1.0.0
Examples
>>> from eegdash.dataset import DS003694 >>> dataset = DS003694(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003702(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003702. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003702 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003702 DOI: https://doi.org/10.18112/openneuro.ds003702.v1.0.1
Examples
>>> from eegdash.dataset import DS003702 >>> dataset = DS003702(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003703(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003703. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 102; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003703 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003703 DOI: https://doi.org/10.18112/openneuro.ds003703.v1.0.0
Examples
>>> from eegdash.dataset import DS003703 >>> dataset = DS003703(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003708(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003708. Modality:ieeg; Experiment type:Unknown; Subject type:connectivity. Subjects: 2; recordings: 281; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003708 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003708 DOI: https://doi.org/10.18112/openneuro.ds003708.v1.0.4
Examples
>>> from eegdash.dataset import DS003708 >>> dataset = DS003708(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003710(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003710. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003710 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003710 DOI: https://doi.org/10.18112/openneuro.ds003710.v1.0.2
Examples
>>> from eegdash.dataset import DS003710 >>> dataset = DS003710(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003739(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003739. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 120; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003739 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003739 DOI: https://doi.org/10.18112/openneuro.ds003739.v1.0.2
Examples
>>> from eegdash.dataset import DS003739 >>> dataset = DS003739(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003751(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003751. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 38; recordings: 38; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003751 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003751 DOI: https://doi.org/10.18112/openneuro.ds003751.v1.0.2
Examples
>>> from eegdash.dataset import DS003751 >>> dataset = DS003751(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003753(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003753. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003753 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003753 DOI: https://doi.org/10.18112/openneuro.ds003753.v1.1.0
Examples
>>> from eegdash.dataset import DS003753 >>> dataset = DS003753(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003766(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003766. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 124; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003766 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003766 DOI: https://doi.org/10.18112/openneuro.ds003766.v2.0.3
Examples
>>> from eegdash.dataset import DS003766 >>> dataset = DS003766(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003768(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003768. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 255; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003768 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003768 DOI: https://doi.org/10.18112/openneuro.ds003768.v1.0.0
Examples
>>> from eegdash.dataset import DS003768 >>> dataset = DS003768(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003774(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003774. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003774 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003774 DOI: https://doi.org/10.18112/openneuro.ds003774.v1.0.0
Examples
>>> from eegdash.dataset import DS003774 >>> dataset = DS003774(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003775(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003775. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 111; recordings: 153; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003775 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003775 DOI: https://doi.org/10.18112/openneuro.ds003775.v1.2.1
Examples
>>> from eegdash.dataset import DS003775 >>> dataset = DS003775(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003800(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003800. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 24; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003800 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003800 DOI: https://doi.org/10.18112/openneuro.ds003800.v1.0.0
Examples
>>> from eegdash.dataset import DS003800 >>> dataset = DS003800(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003801(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003801. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003801 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003801 DOI: https://doi.org/10.18112/openneuro.ds003801.v1.0.0
Examples
>>> from eegdash.dataset import DS003801 >>> dataset = DS003801(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003805(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003805. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003805 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003805 DOI: https://doi.org/10.18112/openneuro.ds003805.v1.0.0
Examples
>>> from eegdash.dataset import DS003805 >>> dataset = DS003805(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003810. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003810 DOI: https://doi.org/10.18112/openneuro.ds003810.v2.0.2
Examples
>>> from eegdash.dataset import DS003810 >>> dataset = DS003810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003822(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003822. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003822 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003822 DOI: https://doi.org/10.18112/openneuro.ds003822.v1.1.0
Examples
>>> from eegdash.dataset import DS003822 >>> dataset = DS003822(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003825(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003825. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003825 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003825 DOI: https://doi.org/10.18112/openneuro.ds003825.v1.1.0
Examples
>>> from eegdash.dataset import DS003825 >>> dataset = DS003825(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003838(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003838. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 65; recordings: 130; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003838 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003838 DOI: https://doi.org/10.18112/openneuro.ds003838.v1.0.6
Examples
>>> from eegdash.dataset import DS003838 >>> dataset = DS003838(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003844. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 38; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003844 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003844 DOI: https://doi.org/10.18112/openneuro.ds003844.v1.0.1
Examples
>>> from eegdash.dataset import DS003844 >>> dataset = DS003844(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003846(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003846. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003846 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003846 DOI: https://doi.org/10.18112/openneuro.ds003846.v2.0.2
Examples
>>> from eegdash.dataset import DS003846 >>> dataset = DS003846(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003848(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003848. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 22; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003848 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003848 DOI: https://doi.org/10.18112/openneuro.ds003848.v1.0.3
Examples
>>> from eegdash.dataset import DS003848 >>> dataset = DS003848(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003876. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 54; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003876 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003876 DOI: https://doi.org/10.18112/openneuro.ds003876.v1.0.2
Examples
>>> from eegdash.dataset import DS003876 >>> dataset = DS003876(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003885(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003885. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003885 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003885 DOI: https://doi.org/10.18112/openneuro.ds003885.v1.0.7
Examples
>>> from eegdash.dataset import DS003885 >>> dataset = DS003885(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003887(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003887. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003887 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003887 DOI: https://doi.org/10.18112/openneuro.ds003887.v1.2.2
Examples
>>> from eegdash.dataset import DS003887 >>> dataset = DS003887(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003922(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003922. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 164; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003922 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003922 DOI: https://doi.org/10.18112/openneuro.ds003922.v1.0.1
Examples
>>> from eegdash.dataset import DS003922 >>> dataset = DS003922(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003944(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003944. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 82; recordings: 82; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003944 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003944 DOI: https://doi.org/10.18112/openneuro.ds003944.v1.0.1
Examples
>>> from eegdash.dataset import DS003944 >>> dataset = DS003944(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003947(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003947. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 61; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003947 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003947 DOI: https://doi.org/10.18112/openneuro.ds003947.v1.0.1
Examples
>>> from eegdash.dataset import DS003947 >>> dataset = DS003947(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003969(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003969. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 98; recordings: 392; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003969 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003969 DOI: https://doi.org/10.18112/openneuro.ds003969.v1.0.0
Examples
>>> from eegdash.dataset import DS003969 >>> dataset = DS003969(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS003987(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds003987. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 69; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds003987 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds003987 DOI: https://doi.org/10.18112/openneuro.ds003987.v1.0.0
Examples
>>> from eegdash.dataset import DS003987 >>> dataset = DS003987(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004000(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004000. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 86; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004000 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004000 DOI: https://doi.org/10.18112/openneuro.ds004000.v1.0.0
Examples
>>> from eegdash.dataset import DS004000 >>> dataset = DS004000(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004010(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004010. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004010 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004010 DOI: https://doi.org/10.18112/openneuro.ds004010.v1.0.0
Examples
>>> from eegdash.dataset import DS004010 >>> dataset = DS004010(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004011(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004011. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 132; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004011 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004011 DOI: https://doi.org/10.18112/openneuro.ds004011.v1.0.3
Examples
>>> from eegdash.dataset import DS004011 >>> dataset = DS004011(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004012(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004012. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 294; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004012 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004012 DOI: https://doi.org/10.18112/openneuro.ds004012.v1.0.0
Examples
>>> from eegdash.dataset import DS004012 >>> dataset = DS004012(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004015(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004015. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004015 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004015 DOI: https://doi.org/10.18112/openneuro.ds004015.v1.0.2
Examples
>>> from eegdash.dataset import DS004015 >>> dataset = DS004015(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004017(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004017. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 63; tasks: 0.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004017 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004017 DOI: https://doi.org/10.18112/openneuro.ds004017.v1.0.3
Examples
>>> from eegdash.dataset import DS004017 >>> dataset = DS004017(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004018(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004018. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004018 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004018 DOI: https://doi.org/10.18112/openneuro.ds004018.v2.0.0
Examples
>>> from eegdash.dataset import DS004018 >>> dataset = DS004018(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004019(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004019. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004019 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004019 DOI: https://doi.org/10.18112/openneuro.ds004019.v1.0.0
Examples
>>> from eegdash.dataset import DS004019 >>> dataset = DS004019(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004022(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004022. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004022 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004022 DOI: https://doi.org/10.18112/openneuro.ds004022.v1.0.0
Examples
>>> from eegdash.dataset import DS004022 >>> dataset = DS004022(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004024(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004024. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 497; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004024 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004024 DOI: https://doi.org/10.18112/openneuro.ds004024.v1.0.1
Examples
>>> from eegdash.dataset import DS004024 >>> dataset = DS004024(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004033(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004033. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 36; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004033 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004033 DOI: https://doi.org/10.18112/openneuro.ds004033.v1.0.0
Examples
>>> from eegdash.dataset import DS004033 >>> dataset = DS004033(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004040(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004040. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004040 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004040 DOI: https://doi.org/10.18112/openneuro.ds004040.v1.0.0
Examples
>>> from eegdash.dataset import DS004040 >>> dataset = DS004040(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004043(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004043. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004043 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004043 DOI: https://doi.org/10.18112/openneuro.ds004043.v1.1.0
Examples
>>> from eegdash.dataset import DS004043 >>> dataset = DS004043(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004067(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004067. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 80; recordings: 84; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004067 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004067 DOI: https://doi.org/10.18112/openneuro.ds004067.v1.0.1
Examples
>>> from eegdash.dataset import DS004067 >>> dataset = DS004067(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004075(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004075. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 116; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004075 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004075 DOI: https://doi.org/10.18112/openneuro.ds004075.v1.0.0
Examples
>>> from eegdash.dataset import DS004075 >>> dataset = DS004075(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004078(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004078. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 720; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004078 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004078 DOI: https://doi.org/10.18112/openneuro.ds004078.v1.0.4
Examples
>>> from eegdash.dataset import DS004078 >>> dataset = DS004078(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004080(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004080. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 74; recordings: 117; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004080 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004080 DOI: https://doi.org/10.18112/openneuro.ds004080.v1.2.4
Examples
>>> from eegdash.dataset import DS004080 >>> dataset = DS004080(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004100(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004100. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 319; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004100 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004100 DOI: https://doi.org/10.18112/openneuro.ds004100.v1.1.3
Examples
>>> from eegdash.dataset import DS004100 >>> dataset = DS004100(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004105. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004105 DOI: https://doi.org/10.18112/openneuro.ds004105.v1.0.0
Examples
>>> from eegdash.dataset import DS004105 >>> dataset = DS004105(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004106. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004106 DOI: https://doi.org/10.18112/openneuro.ds004106.v1.0.0
Examples
>>> from eegdash.dataset import DS004106 >>> dataset = DS004106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004107. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 89; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004107 DOI: https://doi.org/10.18112/openneuro.ds004107.v1.0.0
Examples
>>> from eegdash.dataset import DS004107 >>> dataset = DS004107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004117(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004117. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 85; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004117 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004117 DOI: https://doi.org/10.18112/openneuro.ds004117.v1.0.1
Examples
>>> from eegdash.dataset import DS004117 >>> dataset = DS004117(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004118(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004118. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 156; recordings: 247; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004118 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004118 DOI: https://doi.org/10.18112/openneuro.ds004118.v1.0.1
Examples
>>> from eegdash.dataset import DS004118 >>> dataset = DS004118(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004119(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004119. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004119 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004119 DOI: https://doi.org/10.18112/openneuro.ds004119.v1.0.0
Examples
>>> from eegdash.dataset import DS004119 >>> dataset = DS004119(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004120(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004120. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 109; recordings: 131; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004120 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004120 DOI: https://doi.org/10.18112/openneuro.ds004120.v1.0.0
Examples
>>> from eegdash.dataset import DS004120 >>> dataset = DS004120(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004121(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004121. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004121 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004121 DOI: https://doi.org/10.18112/openneuro.ds004121.v1.0.0
Examples
>>> from eegdash.dataset import DS004121 >>> dataset = DS004121(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004122(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004122. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 63; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004122 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004122 DOI: https://doi.org/10.18112/openneuro.ds004122.v1.0.0
Examples
>>> from eegdash.dataset import DS004122 >>> dataset = DS004122(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004123(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004123. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004123 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004123 DOI: https://doi.org/10.18112/openneuro.ds004123.v1.0.0
Examples
>>> from eegdash.dataset import DS004123 >>> dataset = DS004123(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004127(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004127. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 73; tasks: 11.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004127 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004127 DOI: https://doi.org/10.18112/openneuro.ds004127.v3.0.0
Examples
>>> from eegdash.dataset import DS004127 >>> dataset = DS004127(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004147(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004147. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 12; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004147 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004147 DOI: https://doi.org/10.18112/openneuro.ds004147.v1.0.2
Examples
>>> from eegdash.dataset import DS004147 >>> dataset = DS004147(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004148(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004148. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 900; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004148 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004148 DOI: https://doi.org/10.18112/openneuro.ds004148.v1.0.0
Examples
>>> from eegdash.dataset import DS004148 >>> dataset = DS004148(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004151(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004151. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 57; recordings: 57; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004151 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004151 DOI: https://doi.org/10.18112/openneuro.ds004151.v1.0.0
Examples
>>> from eegdash.dataset import DS004151 >>> dataset = DS004151(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004152(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004152. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004152 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004152 DOI: https://doi.org/10.18112/openneuro.ds004152.v1.1.2
Examples
>>> from eegdash.dataset import DS004152 >>> dataset = DS004152(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004166(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004166. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 213; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004166 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004166 DOI: https://doi.org/10.18112/openneuro.ds004166.v1.0.0
Examples
>>> from eegdash.dataset import DS004166 >>> dataset = DS004166(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004194(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004194. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 209; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004194 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004194 DOI: https://doi.org/10.18112/openneuro.ds004194.v3.0.0
Examples
>>> from eegdash.dataset import DS004194 >>> dataset = DS004194(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004196(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004196. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 4; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004196 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004196 DOI: https://doi.org/10.18112/openneuro.ds004196.v2.0.2
Examples
>>> from eegdash.dataset import DS004196 >>> dataset = DS004196(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004200(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004200. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004200 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004200 DOI: https://doi.org/10.18112/openneuro.ds004200.v1.0.1
Examples
>>> from eegdash.dataset import DS004200 >>> dataset = DS004200(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004212(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004212. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 500; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004212 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004212 DOI: https://doi.org/10.18112/openneuro.ds004212.v3.0.0
Examples
>>> from eegdash.dataset import DS004212 >>> dataset = DS004212(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004229(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004229. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004229 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004229 DOI: https://doi.org/10.18112/openneuro.ds004229.v1.0.3
Examples
>>> from eegdash.dataset import DS004229 >>> dataset = DS004229(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004252(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004252. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004252 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004252 DOI: https://doi.org/10.18112/openneuro.ds004252.v1.0.2
Examples
>>> from eegdash.dataset import DS004252 >>> dataset = DS004252(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004256(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004256. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004256 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004256 DOI: https://doi.org/10.18112/openneuro.ds004256.v1.0.5
Examples
>>> from eegdash.dataset import DS004256 >>> dataset = DS004256(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004262. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004262 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004262 DOI: https://doi.org/10.18112/openneuro.ds004262.v1.0.0
Examples
>>> from eegdash.dataset import DS004262 >>> dataset = DS004262(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004264(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004264. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004264 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004264 DOI: https://doi.org/10.18112/openneuro.ds004264.v1.1.0
Examples
>>> from eegdash.dataset import DS004264 >>> dataset = DS004264(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004276(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004276. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004276 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004276 DOI: https://doi.org/10.18112/openneuro.ds004276.v1.0.0
Examples
>>> from eegdash.dataset import DS004276 >>> dataset = DS004276(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004278(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004278. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 876; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004278 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004278 DOI: https://doi.org/10.18112/openneuro.ds004278.v1.0.1
Examples
>>> from eegdash.dataset import DS004278 >>> dataset = DS004278(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004279(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004279. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004279 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004279 DOI: https://doi.org/10.18112/openneuro.ds004279.v1.1.2
Examples
>>> from eegdash.dataset import DS004279 >>> dataset = DS004279(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004284(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004284. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004284 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004284 DOI: https://doi.org/10.18112/openneuro.ds004284.v1.0.0
Examples
>>> from eegdash.dataset import DS004284 >>> dataset = DS004284(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004295(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004295. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004295 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004295 DOI: https://doi.org/10.18112/openneuro.ds004295.v1.0.0
Examples
>>> from eegdash.dataset import DS004295 >>> dataset = DS004295(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004306(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004306. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004306 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004306 DOI: https://doi.org/10.18112/openneuro.ds004306.v1.0.2
Examples
>>> from eegdash.dataset import DS004306 >>> dataset = DS004306(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004315(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004315. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004315 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004315 DOI: https://doi.org/10.18112/openneuro.ds004315.v1.0.0
Examples
>>> from eegdash.dataset import DS004315 >>> dataset = DS004315(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004317(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004317. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 50; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004317 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004317 DOI: https://doi.org/10.18112/openneuro.ds004317.v1.0.3
Examples
>>> from eegdash.dataset import DS004317 >>> dataset = DS004317(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004324(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004324. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004324 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004324 DOI: https://doi.org/10.18112/openneuro.ds004324.v1.0.0
Examples
>>> from eegdash.dataset import DS004324 >>> dataset = DS004324(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004330(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004330. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 270; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004330 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004330 DOI: https://doi.org/10.18112/openneuro.ds004330.v1.0.0
Examples
>>> from eegdash.dataset import DS004330 >>> dataset = DS004330(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004346(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004346. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004346 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004346 DOI: https://doi.org/10.18112/openneuro.ds004346.v1.0.8
Examples
>>> from eegdash.dataset import DS004346 >>> dataset = DS004346(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004347(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004347. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004347 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004347 DOI: https://doi.org/10.18112/openneuro.ds004347.v1.0.0
Examples
>>> from eegdash.dataset import DS004347 >>> dataset = DS004347(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004348(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004348. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 18; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004348 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004348 DOI: https://doi.org/10.18112/openneuro.ds004348.v1.0.5
Examples
>>> from eegdash.dataset import DS004348 >>> dataset = DS004348(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004350(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004350. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 240; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004350 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004350 DOI: https://doi.org/10.18112/openneuro.ds004350.v2.0.0
Examples
>>> from eegdash.dataset import DS004350 >>> dataset = DS004350(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004356(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004356. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004356 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004356 DOI: https://doi.org/10.18112/openneuro.ds004356.v2.2.1
Examples
>>> from eegdash.dataset import DS004356 >>> dataset = DS004356(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004357(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004357. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004357 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004357 DOI: https://doi.org/10.18112/openneuro.ds004357.v1.0.1
Examples
>>> from eegdash.dataset import DS004357 >>> dataset = DS004357(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004362(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004362. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 109; recordings: 1526; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004362 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004362 DOI: https://doi.org/10.18112/openneuro.ds004362.v1.0.0
Examples
>>> from eegdash.dataset import DS004362 >>> dataset = DS004362(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004367(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004367. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004367 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004367 DOI: https://doi.org/10.18112/openneuro.ds004367.v1.0.2
Examples
>>> from eegdash.dataset import DS004367 >>> dataset = DS004367(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004368(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004368. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004368 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004368 DOI: https://doi.org/10.18112/openneuro.ds004368.v1.0.2
Examples
>>> from eegdash.dataset import DS004368 >>> dataset = DS004368(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004369(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004369. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004369 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004369 DOI: https://doi.org/10.18112/openneuro.ds004369.v1.0.1
Examples
>>> from eegdash.dataset import DS004369 >>> dataset = DS004369(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004370(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004370. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 15; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004370 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004370 DOI: https://doi.org/10.18112/openneuro.ds004370.v1.0.2
Examples
>>> from eegdash.dataset import DS004370 >>> dataset = DS004370(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004381(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004381. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 437; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004381 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004381 DOI: https://doi.org/10.18112/openneuro.ds004381.v1.0.2
Examples
>>> from eegdash.dataset import DS004381 >>> dataset = DS004381(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004388(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004388. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 399; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004388 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004388 DOI: https://doi.org/10.18112/openneuro.ds004388.v1.0.0
Examples
>>> from eegdash.dataset import DS004388 >>> dataset = DS004388(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004389(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004389. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 260; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004389 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004389 DOI: https://doi.org/10.18112/openneuro.ds004389.v1.0.0
Examples
>>> from eegdash.dataset import DS004389 >>> dataset = DS004389(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004395(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004395. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 364; recordings: 6483; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004395 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004395 DOI: https://doi.org/10.18112/openneuro.ds004395.v2.0.0
Examples
>>> from eegdash.dataset import DS004395 >>> dataset = DS004395(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004398(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004398. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 20; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004398 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004398
Examples
>>> from eegdash.dataset import DS004398 >>> dataset = DS004398(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004408(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004408. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 380; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004408 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004408 DOI: https://doi.org/10.18112/openneuro.ds004408.v1.0.8
Examples
>>> from eegdash.dataset import DS004408 >>> dataset = DS004408(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004444(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004444. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 465; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004444 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004444 DOI: https://doi.org/10.18112/openneuro.ds004444.v1.0.1
Examples
>>> from eegdash.dataset import DS004444 >>> dataset = DS004444(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004446(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004446. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 237; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004446 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004446 DOI: https://doi.org/10.18112/openneuro.ds004446.v1.0.1
Examples
>>> from eegdash.dataset import DS004446 >>> dataset = DS004446(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004447(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004447. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 418; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004447 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004447 DOI: https://doi.org/10.18112/openneuro.ds004447.v1.0.1
Examples
>>> from eegdash.dataset import DS004447 >>> dataset = DS004447(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004448(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004448. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 280; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004448 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004448 DOI: https://doi.org/10.18112/openneuro.ds004448.v1.0.2
Examples
>>> from eegdash.dataset import DS004448 >>> dataset = DS004448(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004457(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004457. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 2801; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004457 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004457 DOI: https://doi.org/10.18112/openneuro.ds004457.v1.0.2
Examples
>>> from eegdash.dataset import DS004457 >>> dataset = DS004457(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004460(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004460. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004460 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004460 DOI: https://doi.org/10.18112/openneuro.ds004460.v1.1.0
Examples
>>> from eegdash.dataset import DS004460 >>> dataset = DS004460(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004473(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004473. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004473 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004473 DOI: https://doi.org/10.18112/openneuro.ds004473.v1.0.1
Examples
>>> from eegdash.dataset import DS004473 >>> dataset = DS004473(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004475(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004475. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004475 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004475 DOI: https://doi.org/10.18112/openneuro.ds004475.v1.0.3
Examples
>>> from eegdash.dataset import DS004475 >>> dataset = DS004475(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004477(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004477. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004477 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004477 DOI: https://doi.org/10.18112/openneuro.ds004477.v1.0.2
Examples
>>> from eegdash.dataset import DS004477 >>> dataset = DS004477(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004483(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004483. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 282; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004483 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004483 DOI: https://doi.org/10.18112/openneuro.ds004483.v1.0.0
Examples
>>> from eegdash.dataset import DS004483 >>> dataset = DS004483(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004502(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004502. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004502 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004502 DOI: https://doi.org/10.18112/openneuro.ds004502.v1.0.1
Examples
>>> from eegdash.dataset import DS004502 >>> dataset = DS004502(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004504(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004504. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 88; recordings: 88; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004504 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004504 DOI: https://doi.org/10.18112/openneuro.ds004504.v1.0.8
Examples
>>> from eegdash.dataset import DS004504 >>> dataset = DS004504(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 25; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004505 DOI: https://doi.org/10.18112/openneuro.ds004505.v1.0.4
Examples
>>> from eegdash.dataset import DS004505 >>> dataset = DS004505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004511(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004511. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 45; recordings: 134; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004511 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004511 DOI: https://doi.org/10.18112/openneuro.ds004511.v1.0.2
Examples
>>> from eegdash.dataset import DS004511 >>> dataset = DS004511(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004514(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004514. Modality:eeg, fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 24; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004514 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004514 DOI: https://doi.org/10.18112/openneuro.ds004514.v1.1.2
Examples
>>> from eegdash.dataset import DS004514 >>> dataset = DS004514(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004515. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 54; recordings: 54; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004515 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004515 DOI: https://doi.org/10.18112/openneuro.ds004515.v1.0.0
Examples
>>> from eegdash.dataset import DS004515 >>> dataset = DS004515(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004517(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004517. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 7; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004517 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004517 DOI: https://doi.org/10.18112/openneuro.ds004517.v1.0.2
Examples
>>> from eegdash.dataset import DS004517 >>> dataset = DS004517(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004519. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 40; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004519 DOI: https://doi.org/10.18112/openneuro.ds004519.v1.0.1
Examples
>>> from eegdash.dataset import DS004519 >>> dataset = DS004519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004520. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 33; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004520 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004520 DOI: https://doi.org/10.18112/openneuro.ds004520.v1.0.1
Examples
>>> from eegdash.dataset import DS004520 >>> dataset = DS004520(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004521(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004521. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004521 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004521 DOI: https://doi.org/10.18112/openneuro.ds004521.v1.0.1
Examples
>>> from eegdash.dataset import DS004521 >>> dataset = DS004521(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004532(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004532. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 137; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004532 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004532 DOI: https://doi.org/10.18112/openneuro.ds004532.v1.2.0
Examples
>>> from eegdash.dataset import DS004532 >>> dataset = DS004532(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004551(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004551. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 114; recordings: 125; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004551 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004551 DOI: https://doi.org/10.18112/openneuro.ds004551.v1.0.6
Examples
>>> from eegdash.dataset import DS004551 >>> dataset = DS004551(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004554(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004554. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004554 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004554 DOI: https://doi.org/10.18112/openneuro.ds004554.v1.0.4
Examples
>>> from eegdash.dataset import DS004554 >>> dataset = DS004554(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004561(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004561. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004561 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004561 DOI: https://doi.org/10.18112/openneuro.ds004561.v1.0.0
Examples
>>> from eegdash.dataset import DS004561 >>> dataset = DS004561(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004563(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004563. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 119; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004563 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004563 DOI: https://doi.org/10.18112/openneuro.ds004563.v1.0.1
Examples
>>> from eegdash.dataset import DS004563 >>> dataset = DS004563(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004572(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004572. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 516; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004572 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004572 DOI: https://doi.org/10.18112/openneuro.ds004572.v1.3.1
Examples
>>> from eegdash.dataset import DS004572 >>> dataset = DS004572(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004574. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 146; recordings: 146; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004574 DOI: https://doi.org/10.18112/openneuro.ds004574.v1.0.0
Examples
>>> from eegdash.dataset import DS004574 >>> dataset = DS004574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004577(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004577. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 103; recordings: 130; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004577 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004577 DOI: https://doi.org/10.18112/openneuro.ds004577.v1.0.1
Examples
>>> from eegdash.dataset import DS004577 >>> dataset = DS004577(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004579(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004579. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 139; recordings: 139; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004579 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004579 DOI: https://doi.org/10.18112/openneuro.ds004579.v1.0.0
Examples
>>> from eegdash.dataset import DS004579 >>> dataset = DS004579(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004580(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004580. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 147; recordings: 147; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004580 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004580 DOI: https://doi.org/10.18112/openneuro.ds004580.v1.0.0
Examples
>>> from eegdash.dataset import DS004580 >>> dataset = DS004580(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004582(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004582. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 73; recordings: 73; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004582 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004582 DOI: https://doi.org/10.18112/openneuro.ds004582.v1.0.0
Examples
>>> from eegdash.dataset import DS004582 >>> dataset = DS004582(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004584(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004584. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 149; recordings: 149; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004584 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004584 DOI: https://doi.org/10.18112/openneuro.ds004584.v1.0.0
Examples
>>> from eegdash.dataset import DS004584 >>> dataset = DS004584(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004587(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004587. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 103; recordings: 114; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004587 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004587 DOI: https://doi.org/10.18112/openneuro.ds004587.v1.0.0
Examples
>>> from eegdash.dataset import DS004587 >>> dataset = DS004587(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004588(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004588. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004588 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004588 DOI: https://doi.org/10.18112/openneuro.ds004588.v1.2.0
Examples
>>> from eegdash.dataset import DS004588 >>> dataset = DS004588(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004595(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004595. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004595 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004595 DOI: https://doi.org/10.18112/openneuro.ds004595.v1.0.0
Examples
>>> from eegdash.dataset import DS004595 >>> dataset = DS004595(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004598(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004598. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004598 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004598 DOI: https://doi.org/10.18112/openneuro.ds004598.v1.0.0
Examples
>>> from eegdash.dataset import DS004598 >>> dataset = DS004598(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004602(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004602. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 182; recordings: 546; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004602 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004602 DOI: https://doi.org/10.18112/openneuro.ds004602.v1.0.1
Examples
>>> from eegdash.dataset import DS004602 >>> dataset = DS004602(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004603(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004603. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 37; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004603 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004603 DOI: https://doi.org/10.18112/openneuro.ds004603.v1.1.0
Examples
>>> from eegdash.dataset import DS004603 >>> dataset = DS004603(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004621(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004621. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 167; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004621 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004621 DOI: https://doi.org/10.18112/openneuro.ds004621.v1.0.4
Examples
>>> from eegdash.dataset import DS004621 >>> dataset = DS004621(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004624(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004624. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 66425; tasks: 32.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004624 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004624 DOI: https://doi.org/10.18112/openneuro.ds004624.v2.0.0
Examples
>>> from eegdash.dataset import DS004624 >>> dataset = DS004624(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004625(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004625. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 543; tasks: 9.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004625 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004625 DOI: https://doi.org/10.18112/openneuro.ds004625.v1.0.2
Examples
>>> from eegdash.dataset import DS004625 >>> dataset = DS004625(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004626(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004626. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004626 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004626 DOI: https://doi.org/10.18112/openneuro.ds004626.v1.0.2
Examples
>>> from eegdash.dataset import DS004626 >>> dataset = DS004626(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004635(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004635. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004635 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004635 DOI: https://doi.org/10.18112/openneuro.ds004635.v3.1.0
Examples
>>> from eegdash.dataset import DS004635 >>> dataset = DS004635(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004642(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004642. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 10; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004642 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004642 DOI: https://doi.org/10.18112/openneuro.ds004642.v1.0.1
Examples
>>> from eegdash.dataset import DS004642 >>> dataset = DS004642(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004657(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004657. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 119; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004657 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004657 DOI: https://doi.org/10.18112/openneuro.ds004657.v1.0.3
Examples
>>> from eegdash.dataset import DS004657 >>> dataset = DS004657(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004660(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004660. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004660 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004660 DOI: https://doi.org/10.18112/openneuro.ds004660.v1.0.2
Examples
>>> from eegdash.dataset import DS004660 >>> dataset = DS004660(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004661(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004661. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004661 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004661 DOI: https://doi.org/10.18112/openneuro.ds004661.v1.1.0
Examples
>>> from eegdash.dataset import DS004661 >>> dataset = DS004661(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004696(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004696. Modality:ieeg; Experiment type:Unknown; Subject type:Single pulse electrical stimulation, limbic circuitry. Subjects: 10; recordings: 5243; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004696 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004696 DOI: https://doi.org/10.18112/openneuro.ds004696.v1.0.1
Examples
>>> from eegdash.dataset import DS004696 >>> dataset = DS004696(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004703(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004703. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 11; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004703 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004703 DOI: https://doi.org/10.18112/openneuro.ds004703.v1.1.0
Examples
>>> from eegdash.dataset import DS004703 >>> dataset = DS004703(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004706(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004706. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 298; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004706 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004706 DOI: https://doi.org/10.18112/openneuro.ds004706.v1.0.0
Examples
>>> from eegdash.dataset import DS004706 >>> dataset = DS004706(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004718(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004718. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004718 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004718 DOI: https://doi.org/10.18112/openneuro.ds004718.v1.1.2
Examples
>>> from eegdash.dataset import DS004718 >>> dataset = DS004718(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004738(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004738. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 25; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004738 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004738 DOI: https://doi.org/10.18112/openneuro.ds004738.v1.0.1
Examples
>>> from eegdash.dataset import DS004738 >>> dataset = DS004738(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004745(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004745. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 6; recordings: 6; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004745 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004745 DOI: https://doi.org/10.18112/openneuro.ds004745.v1.0.1
Examples
>>> from eegdash.dataset import DS004745 >>> dataset = DS004745(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004752. Modality:eeg, ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 136; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004752 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004752 DOI: https://doi.org/10.18112/openneuro.ds004752.v1.0.1
Examples
>>> from eegdash.dataset import DS004752 >>> dataset = DS004752(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004770(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004770. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004770 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004770 DOI: https://doi.org/10.18112/openneuro.ds004770.v1.0.0
Examples
>>> from eegdash.dataset import DS004770 >>> dataset = DS004770(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004771(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004771. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 61; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004771 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004771 DOI: https://doi.org/10.18112/openneuro.ds004771.v1.0.0
Examples
>>> from eegdash.dataset import DS004771 >>> dataset = DS004771(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004774(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004774. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004774 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004774 DOI: https://doi.org/10.18112/openneuro.ds004774.v1.0.0
Examples
>>> from eegdash.dataset import DS004774 >>> dataset = DS004774(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004784(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004784. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 6; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004784 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004784 DOI: https://doi.org/10.18112/openneuro.ds004784.v1.0.4
Examples
>>> from eegdash.dataset import DS004784 >>> dataset = DS004784(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004785(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004785. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004785 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004785 DOI: https://doi.org/10.18112/openneuro.ds004785.v1.0.1
Examples
>>> from eegdash.dataset import DS004785 >>> dataset = DS004785(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004789(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004789. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 273; recordings: 983; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004789 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004789 DOI: https://doi.org/10.18112/openneuro.ds004789.v3.1.0
Examples
>>> from eegdash.dataset import DS004789 >>> dataset = DS004789(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004796(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004796. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 79; recordings: 235; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004796 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004796 DOI: https://doi.org/10.18112/openneuro.ds004796.v1.1.0
Examples
>>> from eegdash.dataset import DS004796 >>> dataset = DS004796(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004802(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004802. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 79; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004802 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004802 DOI: https://doi.org/10.18112/openneuro.ds004802.v1.0.0
Examples
>>> from eegdash.dataset import DS004802 >>> dataset = DS004802(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004809(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004809. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 252; recordings: 889; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004809 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004809 DOI: https://doi.org/10.18112/openneuro.ds004809.v2.2.0
Examples
>>> from eegdash.dataset import DS004809 >>> dataset = DS004809(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004816(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004816. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004816 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004816 DOI: https://doi.org/10.18112/openneuro.ds004816.v1.0.0
Examples
>>> from eegdash.dataset import DS004816 >>> dataset = DS004816(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004817(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004817. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004817 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004817 DOI: https://doi.org/10.18112/openneuro.ds004817.v1.0.0
Examples
>>> from eegdash.dataset import DS004817 >>> dataset = DS004817(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004819(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004819. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004819 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004819 DOI: https://doi.org/10.18112/openneuro.ds004819.v1.0.0
Examples
>>> from eegdash.dataset import DS004819 >>> dataset = DS004819(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004830(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004830. Modality:fnirs; Experiment type:Unknown; Subject type:Spatial Attention Decoding, Auditory Neuroscience, Complex Scene Analysis, fNIRS, BCI, Machine Learning. Subjects: 13; recordings: 226; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004830 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004830 DOI: https://doi.org/10.18112/openneuro.ds004830.v1.0.1
Examples
>>> from eegdash.dataset import DS004830 >>> dataset = DS004830(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004837(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004837. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 106; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004837 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004837 DOI: https://doi.org/10.18112/openneuro.ds004837.v1.0.2
Examples
>>> from eegdash.dataset import DS004837 >>> dataset = DS004837(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004840(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004840. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 51; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004840 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004840 DOI: https://doi.org/10.18112/openneuro.ds004840.v1.0.1
Examples
>>> from eegdash.dataset import DS004840 >>> dataset = DS004840(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004841(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004841. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 147; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004841 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004841 DOI: https://doi.org/10.18112/openneuro.ds004841.v1.0.1
Examples
>>> from eegdash.dataset import DS004841 >>> dataset = DS004841(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004842(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004842. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 102; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004842 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004842 DOI: https://doi.org/10.18112/openneuro.ds004842.v1.0.0
Examples
>>> from eegdash.dataset import DS004842 >>> dataset = DS004842(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004843(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004843. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 14; recordings: 92; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004843 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004843 DOI: https://doi.org/10.18112/openneuro.ds004843.v1.0.0
Examples
>>> from eegdash.dataset import DS004843 >>> dataset = DS004843(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004844(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004844. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 68; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004844 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004844 DOI: https://doi.org/10.18112/openneuro.ds004844.v1.0.0
Examples
>>> from eegdash.dataset import DS004844 >>> dataset = DS004844(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004849(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004849. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004849 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004849 DOI: https://doi.org/10.18112/openneuro.ds004849.v1.0.0
Examples
>>> from eegdash.dataset import DS004849 >>> dataset = DS004849(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004850(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004850. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004850 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004850 DOI: https://doi.org/10.18112/openneuro.ds004850.v1.0.0
Examples
>>> from eegdash.dataset import DS004850 >>> dataset = DS004850(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004851(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004851. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 66; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004851 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004851 DOI: https://doi.org/10.18112/openneuro.ds004851.v2.1.0
Examples
>>> from eegdash.dataset import DS004851 >>> dataset = DS004851(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004852(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004852. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004852 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004852 DOI: https://doi.org/10.18112/openneuro.ds004852.v1.0.0
Examples
>>> from eegdash.dataset import DS004852 >>> dataset = DS004852(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004853(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004853. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004853 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004853 DOI: https://doi.org/10.18112/openneuro.ds004853.v1.0.0
Examples
>>> from eegdash.dataset import DS004853 >>> dataset = DS004853(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004854(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004854. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004854 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004854 DOI: https://doi.org/10.18112/openneuro.ds004854.v1.0.0
Examples
>>> from eegdash.dataset import DS004854 >>> dataset = DS004854(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004855(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004855. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004855 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004855 DOI: https://doi.org/10.18112/openneuro.ds004855.v1.0.0
Examples
>>> from eegdash.dataset import DS004855 >>> dataset = DS004855(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004859(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004859. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004859 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004859 DOI: https://doi.org/10.18112/openneuro.ds004859.v1.0.0
Examples
>>> from eegdash.dataset import DS004859 >>> dataset = DS004859(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004860(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004860. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004860 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004860 DOI: https://doi.org/10.18112/openneuro.ds004860.v1.0.0
Examples
>>> from eegdash.dataset import DS004860 >>> dataset = DS004860(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004865(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004865. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 172; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004865 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004865 DOI: https://doi.org/10.18112/openneuro.ds004865.v2.0.1
Examples
>>> from eegdash.dataset import DS004865 >>> dataset = DS004865(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004883(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004883. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 172; recordings: 516; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004883 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004883 DOI: https://doi.org/10.18112/openneuro.ds004883.v1.0.0
Examples
>>> from eegdash.dataset import DS004883 >>> dataset = DS004883(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004902(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004902. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 218; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004902 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004902 DOI: https://doi.org/10.18112/openneuro.ds004902.v1.0.8
Examples
>>> from eegdash.dataset import DS004902 >>> dataset = DS004902(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004917(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004917. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004917 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004917 DOI: https://doi.org/10.18112/openneuro.ds004917.v1.0.1
Examples
>>> from eegdash.dataset import DS004917 >>> dataset = DS004917(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004929(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004929. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 233; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004929 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004929 DOI: https://doi.org/10.18112/openneuro.ds004929.v1.0.0
Examples
>>> from eegdash.dataset import DS004929 >>> dataset = DS004929(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004940(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004940. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 48; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004940 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004940 DOI: https://doi.org/10.18112/openneuro.ds004940.v1.0.1
Examples
>>> from eegdash.dataset import DS004940 >>> dataset = DS004940(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004942(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004942. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004942 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004942 DOI: https://doi.org/10.18112/openneuro.ds004942.v1.0.0
Examples
>>> from eegdash.dataset import DS004942 >>> dataset = DS004942(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004944(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004944. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 44; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004944 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004944 DOI: https://doi.org/10.18112/openneuro.ds004944.v1.1.0
Examples
>>> from eegdash.dataset import DS004944 >>> dataset = DS004944(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004951(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004951. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004951 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004951 DOI: https://doi.org/10.18112/openneuro.ds004951.v1.0.0
Examples
>>> from eegdash.dataset import DS004951 >>> dataset = DS004951(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004952(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004952. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 245; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004952 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004952 DOI: https://doi.org/10.18112/openneuro.ds004952.v1.2.2
Examples
>>> from eegdash.dataset import DS004952 >>> dataset = DS004952(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004973(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004973. Modality:fnirs; Experiment type:Unknown; Subject type:Highly automated driving vehicles. Subjects: 21; recordings: 1177; tasks: 12.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004973 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004973 DOI: https://doi.org/10.18112/openneuro.ds004973.v1.0.1
Examples
>>> from eegdash.dataset import DS004973 >>> dataset = DS004973(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004977(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004977. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 4479; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004977 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004977 DOI: https://doi.org/10.18112/openneuro.ds004977.v1.2.0
Examples
>>> from eegdash.dataset import DS004977 >>> dataset = DS004977(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004980(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004980. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 17; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004980 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004980 DOI: https://doi.org/10.18112/openneuro.ds004980.v1.0.0
Examples
>>> from eegdash.dataset import DS004980 >>> dataset = DS004980(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004993(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004993. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 3; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004993 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004993 DOI: https://doi.org/10.18112/openneuro.ds004993.v1.1.2
Examples
>>> from eegdash.dataset import DS004993 >>> dataset = DS004993(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004995(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004995. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 20; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004995 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004995 DOI: https://doi.org/10.18112/openneuro.ds004995.v1.0.2
Examples
>>> from eegdash.dataset import DS004995 >>> dataset = DS004995(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS004998(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds004998. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 145; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds004998 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds004998 DOI: https://doi.org/10.18112/openneuro.ds004998.v1.2.2
Examples
>>> from eegdash.dataset import DS004998 >>> dataset = DS004998(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005007(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005007. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 40; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005007 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005007 DOI: https://doi.org/10.18112/openneuro.ds005007.v1.0.0
Examples
>>> from eegdash.dataset import DS005007 >>> dataset = DS005007(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005021(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005021. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005021 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005021 DOI: https://doi.org/10.18112/openneuro.ds005021.v1.2.1
Examples
>>> from eegdash.dataset import DS005021 >>> dataset = DS005021(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005028(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005028. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 105; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005028 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005028 DOI: https://doi.org/10.18112/openneuro.ds005028.v1.0.0
Examples
>>> from eegdash.dataset import DS005028 >>> dataset = DS005028(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005034(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005034. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 100; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005034 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005034 DOI: https://doi.org/10.18112/openneuro.ds005034.v1.0.1
Examples
>>> from eegdash.dataset import DS005034 >>> dataset = DS005034(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005048(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005048. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 35; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005048 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005048 DOI: https://doi.org/10.18112/openneuro.ds005048.v1.0.1
Examples
>>> from eegdash.dataset import DS005048 >>> dataset = DS005048(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005059(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005059. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 69; recordings: 282; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005059 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005059 DOI: https://doi.org/10.18112/openneuro.ds005059.v1.0.6
Examples
>>> from eegdash.dataset import DS005059 >>> dataset = DS005059(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005065(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005065. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 3397; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005065 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005065 DOI: https://doi.org/10.18112/openneuro.ds005065.v1.0.0
Examples
>>> from eegdash.dataset import DS005065 >>> dataset = DS005065(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005079(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005079. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 60; tasks: 15.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005079 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005079 DOI: https://doi.org/10.18112/openneuro.ds005079.v2.0.0
Examples
>>> from eegdash.dataset import DS005079 >>> dataset = DS005079(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005083(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005083. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 61; recordings: 1357; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005083 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005083 DOI: https://doi.org/10.18112/openneuro.ds005083.v1.0.0
Examples
>>> from eegdash.dataset import DS005083 >>> dataset = DS005083(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005087(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005087. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 60; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005087 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005087 DOI: https://doi.org/10.18112/openneuro.ds005087.v1.0.1
Examples
>>> from eegdash.dataset import DS005087 >>> dataset = DS005087(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005089(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005089. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 36; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005089 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005089 DOI: https://doi.org/10.18112/openneuro.ds005089.v1.0.1
Examples
>>> from eegdash.dataset import DS005089 >>> dataset = DS005089(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005095. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005095 DOI: https://doi.org/10.18112/openneuro.ds005095.v1.0.1
Examples
>>> from eegdash.dataset import DS005095 >>> dataset = DS005095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005106. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 42; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005106 DOI: https://doi.org/10.18112/openneuro.ds005106.v1.5.0
Examples
>>> from eegdash.dataset import DS005106 >>> dataset = DS005106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005107. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 350; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005107 DOI: https://doi.org/10.18112/openneuro.ds005107.v2.0.0
Examples
>>> from eegdash.dataset import DS005107 >>> dataset = DS005107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005114(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005114. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 91; recordings: 223; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005114 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005114 DOI: https://doi.org/10.18112/openneuro.ds005114.v1.0.0
Examples
>>> from eegdash.dataset import DS005114 >>> dataset = DS005114(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005121(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005121. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005121 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005121 DOI: https://doi.org/10.18112/openneuro.ds005121.v1.0.2
Examples
>>> from eegdash.dataset import DS005121 >>> dataset = DS005121(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005131(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005131. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 58; recordings: 63; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005131 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005131 DOI: https://doi.org/10.18112/openneuro.ds005131.v1.0.1
Examples
>>> from eegdash.dataset import DS005131 >>> dataset = DS005131(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005169(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005169. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 112; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005169 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005169 DOI: https://doi.org/10.18112/openneuro.ds005169.v1.0.0
Examples
>>> from eegdash.dataset import DS005169 >>> dataset = DS005169(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005170(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005170. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 225; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005170 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005170 DOI: https://doi.org/10.18112/openneuro.ds005170.v1.1.2
Examples
>>> from eegdash.dataset import DS005170 >>> dataset = DS005170(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005178(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005178. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 140; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005178 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005178 DOI: https://doi.org/10.18112/openneuro.ds005178.v1.0.0
Examples
>>> from eegdash.dataset import DS005178 >>> dataset = DS005178(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005185(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005185. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 356; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005185 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005185 DOI: https://doi.org/10.18112/openneuro.ds005185.v1.0.2
Examples
>>> from eegdash.dataset import DS005185 >>> dataset = DS005185(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005189(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005189. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005189 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005189 DOI: https://doi.org/10.18112/openneuro.ds005189.v1.0.1
Examples
>>> from eegdash.dataset import DS005189 >>> dataset = DS005189(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005207(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005207. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005207 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005207 DOI: https://doi.org/10.18112/openneuro.ds005207.v1.0.0
Examples
>>> from eegdash.dataset import DS005207 >>> dataset = DS005207(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005241(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005241. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 117; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005241 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005241 DOI: https://doi.org/10.18112/openneuro.ds005241.v1.1.0
Examples
>>> from eegdash.dataset import DS005241 >>> dataset = DS005241(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005261(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005261. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 128; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005261 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005261 DOI: https://doi.org/10.18112/openneuro.ds005261.v3.0.0
Examples
>>> from eegdash.dataset import DS005261 >>> dataset = DS005261(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005262(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005262. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 186; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005262 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005262 DOI: https://doi.org/10.18112/openneuro.ds005262.v1.0.1
Examples
>>> from eegdash.dataset import DS005262 >>> dataset = DS005262(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005273(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005273. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 33; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005273 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005273 DOI: https://doi.org/10.18112/openneuro.ds005273.v1.0.0
Examples
>>> from eegdash.dataset import DS005273 >>> dataset = DS005273(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005274(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005274. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 22; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005274 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005274 DOI: https://doi.org/10.18112/openneuro.ds005274.v1.0.0
Examples
>>> from eegdash.dataset import DS005274 >>> dataset = DS005274(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005279(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005279. Modality:meg; Experiment type:Unknown; Subject type:Neurolingusitics. Subjects: 31; recordings: 1632; tasks: 54.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005279 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005279 DOI: https://doi.org/10.18112/openneuro.ds005279.v1.0.3
Examples
>>> from eegdash.dataset import DS005279 >>> dataset = DS005279(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005280(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005280. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 223; recordings: 669; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005280 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005280 DOI: https://doi.org/10.18112/openneuro.ds005280.v1.0.0
Examples
>>> from eegdash.dataset import DS005280 >>> dataset = DS005280(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005284(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005284. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005284 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005284 DOI: https://doi.org/10.18112/openneuro.ds005284.v1.0.0
Examples
>>> from eegdash.dataset import DS005284 >>> dataset = DS005284(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005285(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005285. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 116; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005285 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005285 DOI: https://doi.org/10.18112/openneuro.ds005285.v1.0.0
Examples
>>> from eegdash.dataset import DS005285 >>> dataset = DS005285(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005286(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005286. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 30; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005286 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005286 DOI: https://doi.org/10.18112/openneuro.ds005286.v1.0.0
Examples
>>> from eegdash.dataset import DS005286 >>> dataset = DS005286(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005289(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005289. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 195; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005289 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005289 DOI: https://doi.org/10.18112/openneuro.ds005289.v1.0.0
Examples
>>> from eegdash.dataset import DS005289 >>> dataset = DS005289(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005291(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005291. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 65; recordings: 65; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005291 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005291 DOI: https://doi.org/10.18112/openneuro.ds005291.v1.0.0
Examples
>>> from eegdash.dataset import DS005291 >>> dataset = DS005291(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005292(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005292. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 142; recordings: 426; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005292 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005292 DOI: https://doi.org/10.18112/openneuro.ds005292.v1.0.0
Examples
>>> from eegdash.dataset import DS005292 >>> dataset = DS005292(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005293(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005293. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 95; recordings: 570; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005293 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005293 DOI: https://doi.org/10.18112/openneuro.ds005293.v1.0.0
Examples
>>> from eegdash.dataset import DS005293 >>> dataset = DS005293(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005296(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005296. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 62; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005296 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005296 DOI: https://doi.org/10.18112/openneuro.ds005296.v1.0.0
Examples
>>> from eegdash.dataset import DS005296 >>> dataset = DS005296(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005305(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005305. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 165; recordings: 165; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005305 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005305 DOI: https://doi.org/10.18112/openneuro.ds005305.v1.0.1
Examples
>>> from eegdash.dataset import DS005305 >>> dataset = DS005305(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005307(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005307. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 73; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005307 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005307 DOI: https://doi.org/10.18112/openneuro.ds005307.v1.0.1
Examples
>>> from eegdash.dataset import DS005307 >>> dataset = DS005307(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005340(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005340. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005340 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005340 DOI: https://doi.org/10.18112/openneuro.ds005340.v1.0.4
Examples
>>> from eegdash.dataset import DS005340 >>> dataset = DS005340(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005342(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005342. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005342 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005342 DOI: https://doi.org/10.18112/openneuro.ds005342.v1.0.3
Examples
>>> from eegdash.dataset import DS005342 >>> dataset = DS005342(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005343(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005343. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 43; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005343 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005343 DOI: https://doi.org/10.18112/openneuro.ds005343.v1.0.0
Examples
>>> from eegdash.dataset import DS005343 >>> dataset = DS005343(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005345(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005345. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005345 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005345 DOI: https://doi.org/10.18112/openneuro.ds005345.v1.0.1
Examples
>>> from eegdash.dataset import DS005345 >>> dataset = DS005345(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005346(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005346. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 90; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005346 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005346 DOI: https://doi.org/10.18112/openneuro.ds005346.v1.0.5
Examples
>>> from eegdash.dataset import DS005346 >>> dataset = DS005346(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005356(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005356. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 85; recordings: 116; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005356 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005356 DOI: https://doi.org/10.18112/openneuro.ds005356.v1.5.0
Examples
>>> from eegdash.dataset import DS005356 >>> dataset = DS005356(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005363(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005363. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 43; recordings: 43; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005363 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005363 DOI: https://doi.org/10.18112/openneuro.ds005363.v1.0.0
Examples
>>> from eegdash.dataset import DS005363 >>> dataset = DS005363(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005383(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005383. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 240; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005383 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005383 DOI: https://doi.org/10.18112/openneuro.ds005383.v1.0.0
Examples
>>> from eegdash.dataset import DS005383 >>> dataset = DS005383(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005385(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005385. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 608; recordings: 3264; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005385 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005385 DOI: https://doi.org/10.18112/openneuro.ds005385.v1.0.3
Examples
>>> from eegdash.dataset import DS005385 >>> dataset = DS005385(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005397(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005397. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 26; recordings: 26; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005397 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005397 DOI: https://doi.org/10.18112/openneuro.ds005397.v1.0.4
Examples
>>> from eegdash.dataset import DS005397 >>> dataset = DS005397(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005398(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005398. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 185; recordings: 185; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005398 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005398 DOI: https://doi.org/10.18112/openneuro.ds005398.v1.0.1
Examples
>>> from eegdash.dataset import DS005398 >>> dataset = DS005398(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005403(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005403. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005403 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005403 DOI: https://doi.org/10.18112/openneuro.ds005403.v1.0.1
Examples
>>> from eegdash.dataset import DS005403 >>> dataset = DS005403(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005406(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005406. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005406 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005406 DOI: https://doi.org/10.18112/openneuro.ds005406.v1.0.0
Examples
>>> from eegdash.dataset import DS005406 >>> dataset = DS005406(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005407(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005407. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005407 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005407 DOI: https://doi.org/10.18112/openneuro.ds005407.v1.0.0
Examples
>>> from eegdash.dataset import DS005407 >>> dataset = DS005407(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005408(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005408. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 25; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005408 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005408 DOI: https://doi.org/10.18112/openneuro.ds005408.v1.0.0
Examples
>>> from eegdash.dataset import DS005408 >>> dataset = DS005408(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005410(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005410. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 81; recordings: 81; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005410 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005410 DOI: https://doi.org/10.18112/openneuro.ds005410.v1.0.1
Examples
>>> from eegdash.dataset import DS005410 >>> dataset = DS005410(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005411(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005411. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 193; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005411 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005411 DOI: https://doi.org/10.18112/openneuro.ds005411.v1.0.0
Examples
>>> from eegdash.dataset import DS005411 >>> dataset = DS005411(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005415(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005415. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 13; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005415 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005415 DOI: https://doi.org/10.18112/openneuro.ds005415.v1.0.0
Examples
>>> from eegdash.dataset import DS005415 >>> dataset = DS005415(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005416(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005416. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005416 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005416 DOI: https://doi.org/10.18112/openneuro.ds005416.v1.0.1
Examples
>>> from eegdash.dataset import DS005416 >>> dataset = DS005416(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005420(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005420. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 72; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005420 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005420 DOI: https://doi.org/10.18112/openneuro.ds005420.v1.0.0
Examples
>>> from eegdash.dataset import DS005420 >>> dataset = DS005420(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005429(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005429. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 61; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005429 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005429 DOI: https://doi.org/10.18112/openneuro.ds005429.v1.0.0
Examples
>>> from eegdash.dataset import DS005429 >>> dataset = DS005429(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005448(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005448. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 13; recordings: 18; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005448 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005448 DOI: https://doi.org/10.18112/openneuro.ds005448.v1.0.0
Examples
>>> from eegdash.dataset import DS005448 >>> dataset = DS005448(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005473(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005473. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 58; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005473 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005473 DOI: https://doi.org/10.18112/openneuro.ds005473.v1.0.0
Examples
>>> from eegdash.dataset import DS005473 >>> dataset = DS005473(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005486(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005486. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 159; recordings: 445; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005486 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005486 DOI: https://doi.org/10.18112/openneuro.ds005486.v1.0.1
Examples
>>> from eegdash.dataset import DS005486 >>> dataset = DS005486(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005489(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005489. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 37; recordings: 154; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005489 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005489 DOI: https://doi.org/10.18112/openneuro.ds005489.v1.0.3
Examples
>>> from eegdash.dataset import DS005489 >>> dataset = DS005489(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005491(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005491. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005491 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005491 DOI: https://doi.org/10.18112/openneuro.ds005491.v1.0.0
Examples
>>> from eegdash.dataset import DS005491 >>> dataset = DS005491(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005494(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005494. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005494 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005494 DOI: https://doi.org/10.18112/openneuro.ds005494.v1.0.1
Examples
>>> from eegdash.dataset import DS005494 >>> dataset = DS005494(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005505(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005505. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 136; recordings: 1342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005505 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005505 DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import DS005505 >>> dataset = DS005505(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005506(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005506. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 150; recordings: 1405; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005506 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005506 DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import DS005506 >>> dataset = DS005506(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005507(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005507. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 184; recordings: 1812; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005507 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005507 DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import DS005507 >>> dataset = DS005507(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005508(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005508. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 324; recordings: 3342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005508 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005508 DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import DS005508 >>> dataset = DS005508(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005509(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005509. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 330; recordings: 3326; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005509 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005509 DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import DS005509 >>> dataset = DS005509(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005510(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005510. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 135; recordings: 1227; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005510 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005510 DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import DS005510 >>> dataset = DS005510(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005512(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005512. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 257; recordings: 2320; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005512 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005512 DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import DS005512 >>> dataset = DS005512(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005514(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005514. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 295; recordings: 2885; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005514 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005514 DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import DS005514 >>> dataset = DS005514(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005515(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005515. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 533; recordings: 2516; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005515 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005515 DOI: https://doi.org/10.18112/openneuro.ds005515.v1.0.1
Examples
>>> from eegdash.dataset import DS005515 >>> dataset = DS005515(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005516(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005516. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 430; recordings: 3397; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005516 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005516 DOI: https://doi.org/10.18112/openneuro.ds005516.v1.0.1
Examples
>>> from eegdash.dataset import DS005516 >>> dataset = DS005516(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005520(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005520. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 69; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005520 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005520 DOI: https://doi.org/10.18112/openneuro.ds005520.v1.0.1
Examples
>>> from eegdash.dataset import DS005520 >>> dataset = DS005520(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005522(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005522. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 55; recordings: 176; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005522 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005522 DOI: https://doi.org/10.18112/openneuro.ds005522.v1.0.0
Examples
>>> from eegdash.dataset import DS005522 >>> dataset = DS005522(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005523(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005523. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 102; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005523 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005523 DOI: https://doi.org/10.18112/openneuro.ds005523.v1.0.1
Examples
>>> from eegdash.dataset import DS005523 >>> dataset = DS005523(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005530(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005530. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 17; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005530 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005530 DOI: https://doi.org/10.18112/openneuro.ds005530.v1.0.9
Examples
>>> from eegdash.dataset import DS005530 >>> dataset = DS005530(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005540(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005540. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 59; recordings: 103; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005540 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005540 DOI: https://doi.org/10.18112/openneuro.ds005540.v1.0.7
Examples
>>> from eegdash.dataset import DS005540 >>> dataset = DS005540(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005545(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005545. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 106; recordings: 336; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005545 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005545 DOI: https://doi.org/10.18112/openneuro.ds005545.v1.0.3
Examples
>>> from eegdash.dataset import DS005545 >>> dataset = DS005545(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005555(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005555. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 128; recordings: 256; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005555 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005555 DOI: https://doi.org/10.18112/openneuro.ds005555.v1.1.1
Examples
>>> from eegdash.dataset import DS005555 >>> dataset = DS005555(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005557(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005557. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 58; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005557 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005557 DOI: https://doi.org/10.18112/openneuro.ds005557.v1.0.0
Examples
>>> from eegdash.dataset import DS005557 >>> dataset = DS005557(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005558(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005558. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 22; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005558 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005558 DOI: https://doi.org/10.18112/openneuro.ds005558.v1.0.0
Examples
>>> from eegdash.dataset import DS005558 >>> dataset = DS005558(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005565(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005565. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005565 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005565 DOI: https://doi.org/10.18112/openneuro.ds005565.v1.0.3
Examples
>>> from eegdash.dataset import DS005565 >>> dataset = DS005565(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005571(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005571. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 45; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005571 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005571 DOI: https://doi.org/10.18112/openneuro.ds005571.v1.0.1
Examples
>>> from eegdash.dataset import DS005571 >>> dataset = DS005571(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005574(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005574. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 9; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005574 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005574 DOI: https://doi.org/10.18112/openneuro.ds005574.v1.0.2
Examples
>>> from eegdash.dataset import DS005574 >>> dataset = DS005574(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005586(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005586. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 23; recordings: 23; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005586 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005586 DOI: https://doi.org/10.18112/openneuro.ds005586.v2.0.0
Examples
>>> from eegdash.dataset import DS005586 >>> dataset = DS005586(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005594(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005594. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 16; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005594 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005594 DOI: https://doi.org/10.18112/openneuro.ds005594.v1.0.3
Examples
>>> from eegdash.dataset import DS005594 >>> dataset = DS005594(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005620(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005620. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 202; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005620 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005620 DOI: https://doi.org/10.18112/openneuro.ds005620.v1.0.0
Examples
>>> from eegdash.dataset import DS005620 >>> dataset = DS005620(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005624(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005624. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005624 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005624 DOI: https://doi.org/10.18112/openneuro.ds005624.v1.0.0
Examples
>>> from eegdash.dataset import DS005624 >>> dataset = DS005624(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005628(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005628. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 102; recordings: 306; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005628 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005628 DOI: https://doi.org/10.18112/openneuro.ds005628.v1.0.0
Examples
>>> from eegdash.dataset import DS005628 >>> dataset = DS005628(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005642(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005642. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005642 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005642 DOI: https://doi.org/10.18112/openneuro.ds005642.v1.0.1
Examples
>>> from eegdash.dataset import DS005642 >>> dataset = DS005642(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005648(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005648. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005648 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005648 DOI: https://doi.org/10.18112/openneuro.ds005648.v1.0.0
Examples
>>> from eegdash.dataset import DS005648 >>> dataset = DS005648(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005662(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005662. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 80; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005662 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005662 DOI: https://doi.org/10.18112/openneuro.ds005662.v2.0.0
Examples
>>> from eegdash.dataset import DS005662 >>> dataset = DS005662(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005670(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005670. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 2; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005670 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005670 DOI: https://doi.org/10.18112/openneuro.ds005670.v1.0.0
Examples
>>> from eegdash.dataset import DS005670 >>> dataset = DS005670(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005672(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005672. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005672 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005672 DOI: https://doi.org/10.18112/openneuro.ds005672.v1.0.0
Examples
>>> from eegdash.dataset import DS005672 >>> dataset = DS005672(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005688(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005688. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 89; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005688 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005688 DOI: https://doi.org/10.18112/openneuro.ds005688.v1.0.1
Examples
>>> from eegdash.dataset import DS005688 >>> dataset = DS005688(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005691(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005691. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 8; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005691 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005691 DOI: https://doi.org/10.18112/openneuro.ds005691.v1.0.0
Examples
>>> from eegdash.dataset import DS005691 >>> dataset = DS005691(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005692(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005692. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 59; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005692 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005692 DOI: https://doi.org/10.18112/openneuro.ds005692.v1.0.0
Examples
>>> from eegdash.dataset import DS005692 >>> dataset = DS005692(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005697(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005697. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 51; recordings: 51; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005697 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005697 DOI: https://doi.org/10.18112/openneuro.ds005697.v1.0.2
Examples
>>> from eegdash.dataset import DS005697 >>> dataset = DS005697(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005752(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005752. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 253; recordings: 22385; tasks: 14.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005752 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005752 DOI: https://doi.org/10.18112/openneuro.ds005752.v2.1.0
Examples
>>> from eegdash.dataset import DS005752 >>> dataset = DS005752(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005776(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005776. Modality:fnirs; Experiment type:Unknown; Subject type:Sensory Neuroscience. Subjects: 12; recordings: 293; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005776 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005776 DOI: https://doi.org/10.18112/openneuro.ds005776.v1.0.1
Examples
>>> from eegdash.dataset import DS005776 >>> dataset = DS005776(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005777(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005777. Modality:fnirs; Experiment type:Unknown; Subject type:Sensory Neuroscience. Subjects: 15; recordings: 698; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005777 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005777 DOI: https://doi.org/10.18112/openneuro.ds005777.v1.0.1
Examples
>>> from eegdash.dataset import DS005777 >>> dataset = DS005777(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005779(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005779. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 250; tasks: 16.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005779 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005779 DOI: https://doi.org/10.18112/openneuro.ds005779.v1.0.1
Examples
>>> from eegdash.dataset import DS005779 >>> dataset = DS005779(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005787(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005787. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 448; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005787 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005787 DOI: https://doi.org/10.18112/openneuro.ds005787.v1.0.0
Examples
>>> from eegdash.dataset import DS005787 >>> dataset = DS005787(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005795(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005795. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 39; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005795 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005795 DOI: https://doi.org/10.18112/openneuro.ds005795.v1.0.0
Examples
>>> from eegdash.dataset import DS005795 >>> dataset = DS005795(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005810(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005810. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 286; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005810 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005810 DOI: https://doi.org/10.18112/openneuro.ds005810.v1.0.6
Examples
>>> from eegdash.dataset import DS005810 >>> dataset = DS005810(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005811(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005811. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 448; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005811 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005811 DOI: https://doi.org/10.18112/openneuro.ds005811.v1.0.8
Examples
>>> from eegdash.dataset import DS005811 >>> dataset = DS005811(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005815(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005815. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 103; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005815 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005815 DOI: https://doi.org/10.18112/openneuro.ds005815.v2.0.1
Examples
>>> from eegdash.dataset import DS005815 >>> dataset = DS005815(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005841(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005841. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 288; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005841 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005841 DOI: https://doi.org/10.18112/openneuro.ds005841.v1.0.0
Examples
>>> from eegdash.dataset import DS005841 >>> dataset = DS005841(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005857(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005857. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 110; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005857 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005857 DOI: https://doi.org/10.18112/openneuro.ds005857.v1.0.0
Examples
>>> from eegdash.dataset import DS005857 >>> dataset = DS005857(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005863(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005863. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 127; recordings: 357; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005863 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005863 DOI: https://doi.org/10.18112/openneuro.ds005863.v2.0.0
Examples
>>> from eegdash.dataset import DS005863 >>> dataset = DS005863(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005866(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005866. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 60; recordings: 60; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005866 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005866 DOI: https://doi.org/10.18112/openneuro.ds005866.v1.0.1
Examples
>>> from eegdash.dataset import DS005866 >>> dataset = DS005866(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005868(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005868. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005868 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005868 DOI: https://doi.org/10.18112/openneuro.ds005868.v1.0.1
Examples
>>> from eegdash.dataset import DS005868 >>> dataset = DS005868(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005872(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005872. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 1; recordings: 1; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005872 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005872 DOI: https://doi.org/10.18112/openneuro.ds005872.v1.0.0
Examples
>>> from eegdash.dataset import DS005872 >>> dataset = DS005872(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005873(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005873. Modality:eeg, emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 125; recordings: 5654; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005873 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005873 DOI: https://doi.org/10.18112/openneuro.ds005873.v1.1.0
Examples
>>> from eegdash.dataset import DS005873 >>> dataset = DS005873(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005876(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005876. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005876 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005876 DOI: https://doi.org/10.18112/openneuro.ds005876.v1.0.1
Examples
>>> from eegdash.dataset import DS005876 >>> dataset = DS005876(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005907(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005907. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 53; recordings: 53; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005907 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005907 DOI: https://doi.org/10.18112/openneuro.ds005907.v1.0.0
Examples
>>> from eegdash.dataset import DS005907 >>> dataset = DS005907(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005929(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005929. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 77; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005929 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005929 DOI: https://doi.org/10.18112/openneuro.ds005929.v1.0.1
Examples
>>> from eegdash.dataset import DS005929 >>> dataset = DS005929(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005930(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005930. Modality:fnirs; Experiment type:Unknown; Subject type:Motor. Subjects: 13; recordings: 233; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005930 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005930 DOI: https://doi.org/10.18112/openneuro.ds005930.v1.0.1
Examples
>>> from eegdash.dataset import DS005930 >>> dataset = DS005930(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005931(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005931. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 16; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005931 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005931 DOI: https://doi.org/10.18112/openneuro.ds005931.v1.0.0
Examples
>>> from eegdash.dataset import DS005931 >>> dataset = DS005931(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005932(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005932. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005932 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005932 DOI: https://doi.org/10.18112/openneuro.ds005932.v1.0.0
Examples
>>> from eegdash.dataset import DS005932 >>> dataset = DS005932(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005935(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005935. Modality:fnirs; Experiment type:Unknown; Subject type:Mirror Neuron System. Subjects: 22; recordings: 430; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005935 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005935 DOI: https://doi.org/10.18112/openneuro.ds005935.v1.0.0
Examples
>>> from eegdash.dataset import DS005935 >>> dataset = DS005935(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005946(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005946. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 39; recordings: 39; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005946 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005946 DOI: https://doi.org/10.18112/openneuro.ds005946.v1.0.1
Examples
>>> from eegdash.dataset import DS005946 >>> dataset = DS005946(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005953(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005953. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 3; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005953 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005953 DOI: https://doi.org/10.18112/openneuro.ds005953.v1.0.0
Examples
>>> from eegdash.dataset import DS005953 >>> dataset = DS005953(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005960(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005960. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005960 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005960 DOI: https://doi.org/10.18112/openneuro.ds005960.v1.0.0
Examples
>>> from eegdash.dataset import DS005960 >>> dataset = DS005960(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005963(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005963. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 11; recordings: 291; tasks: 7.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005963 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005963
Examples
>>> from eegdash.dataset import DS005963 >>> dataset = DS005963(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS005964(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds005964. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 139; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds005964 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds005964 DOI: https://doi.org/10.18112/openneuro.ds005964.v1.0.0
Examples
>>> from eegdash.dataset import DS005964 >>> dataset = DS005964(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006012(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006012. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 193; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006012 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006012 DOI: https://doi.org/10.18112/openneuro.ds006012.v1.0.1
Examples
>>> from eegdash.dataset import DS006012 >>> dataset = DS006012(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006018(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006018. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 127; recordings: 357; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006018 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006018 DOI: https://doi.org/10.18112/openneuro.ds006018.v1.2.2
Examples
>>> from eegdash.dataset import DS006018 >>> dataset = DS006018(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006033(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006033. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 3; recordings: 5; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006033 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006033 DOI: https://doi.org/10.18112/openneuro.ds006033.v1.0.1
Examples
>>> from eegdash.dataset import DS006033 >>> dataset = DS006033(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006035(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006035. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 15; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006035 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006035 DOI: https://doi.org/10.18112/openneuro.ds006035.v1.0.0
Examples
>>> from eegdash.dataset import DS006035 >>> dataset = DS006035(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006036(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006036. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 88; recordings: 88; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006036 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006036 DOI: https://doi.org/10.18112/openneuro.ds006036.v1.0.5
Examples
>>> from eegdash.dataset import DS006036 >>> dataset = DS006036(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006040(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006040. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 28; recordings: 392; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006040 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006040 DOI: https://doi.org/10.18112/openneuro.ds006040.v1.0.1
Examples
>>> from eegdash.dataset import DS006040 >>> dataset = DS006040(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006065(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006065. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 45; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006065 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006065 DOI: https://doi.org/10.18112/openneuro.ds006065.v1.0.0
Examples
>>> from eegdash.dataset import DS006065 >>> dataset = DS006065(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006095. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 71; recordings: 1182; tasks: 9.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006095 DOI: https://doi.org/10.18112/openneuro.ds006095.v1.0.0
Examples
>>> from eegdash.dataset import DS006095 >>> dataset = DS006095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006104. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 56; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006104 DOI: https://doi.org/10.18112/openneuro.ds006104.v1.0.1
Examples
>>> from eegdash.dataset import DS006104 >>> dataset = DS006104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006107. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 166; recordings: 167; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006107 DOI: https://doi.org/10.18112/openneuro.ds006107.v1.0.0
Examples
>>> from eegdash.dataset import DS006107 >>> dataset = DS006107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006126(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006126. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 90; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006126 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006126 DOI: https://doi.org/10.18112/openneuro.ds006126.v1.0.0
Examples
>>> from eegdash.dataset import DS006126 >>> dataset = DS006126(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006142(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006142. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 27; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006142 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006142 DOI: https://doi.org/10.18112/openneuro.ds006142.v1.0.2
Examples
>>> from eegdash.dataset import DS006142 >>> dataset = DS006142(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006159(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006159. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 62; recordings: 671; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006159 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006159 DOI: https://doi.org/10.18112/openneuro.ds006159.v1.0.0
Examples
>>> from eegdash.dataset import DS006159 >>> dataset = DS006159(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006171(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006171. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 104; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006171 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006171 DOI: https://doi.org/10.18112/openneuro.ds006171.v1.0.0
Examples
>>> from eegdash.dataset import DS006171 >>> dataset = DS006171(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006233(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006233. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 108; recordings: 347; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006233 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006233 DOI: https://doi.org/10.18112/openneuro.ds006233.v1.0.0
Examples
>>> from eegdash.dataset import DS006233 >>> dataset = DS006233(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006234(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006234. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 119; recordings: 378; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006234 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006234 DOI: https://doi.org/10.18112/openneuro.ds006234.v1.0.0
Examples
>>> from eegdash.dataset import DS006234 >>> dataset = DS006234(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006253(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006253. Modality:ieeg; Experiment type:Unknown; Subject type:Decision-Making, Metacognition. Subjects: 23; recordings: 201; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006253 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006253 DOI: https://doi.org/10.18112/openneuro.ds006253.v1.0.3
Examples
>>> from eegdash.dataset import DS006253 >>> dataset = DS006253(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006260(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006260. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 76; recordings: 366; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006260 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006260 DOI: https://doi.org/10.18112/openneuro.ds006260.v1.0.1
Examples
>>> from eegdash.dataset import DS006260 >>> dataset = DS006260(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006269(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006269. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 40; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006269 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006269 DOI: https://doi.org/10.18112/openneuro.ds006269.v1.0.0
Examples
>>> from eegdash.dataset import DS006269 >>> dataset = DS006269(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006317(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006317. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 64; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006317 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006317 DOI: https://doi.org/10.18112/openneuro.ds006317.v1.1.0
Examples
>>> from eegdash.dataset import DS006317 >>> dataset = DS006317(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006334(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006334. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 128; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006334 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006334 DOI: https://doi.org/10.18112/openneuro.ds006334.v1.0.0
Examples
>>> from eegdash.dataset import DS006334 >>> dataset = DS006334(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006366(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006366. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 92; recordings: 148; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006366 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006366 DOI: https://doi.org/10.18112/openneuro.ds006366.v1.0.1
Examples
>>> from eegdash.dataset import DS006366 >>> dataset = DS006366(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006367(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006367. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 52; recordings: 52; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006367 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006367 DOI: https://doi.org/10.18112/openneuro.ds006367.v1.0.1
Examples
>>> from eegdash.dataset import DS006367 >>> dataset = DS006367(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006370(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006370. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 56; recordings: 56; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006370 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006370 DOI: https://doi.org/10.18112/openneuro.ds006370.v1.0.1
Examples
>>> from eegdash.dataset import DS006370 >>> dataset = DS006370(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006374(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006374. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 358; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006374 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006374 DOI: https://doi.org/10.18112/openneuro.ds006374.v1.0.0
Examples
>>> from eegdash.dataset import DS006374 >>> dataset = DS006374(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006377(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006377. Modality:fnirs; Experiment type:Unknown; Subject type:fNIRS. Subjects: 116; recordings: 3952; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006377 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006377 DOI: https://doi.org/10.18112/openneuro.ds006377.v1.0.2
Examples
>>> from eegdash.dataset import DS006377 >>> dataset = DS006377(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006392(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006392. Modality:ieeg; Experiment type:Unknown; Subject type:vision. Subjects: 2; recordings: 595; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006392 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006392 DOI: https://doi.org/10.18112/openneuro.ds006392.v1.0.1
Examples
>>> from eegdash.dataset import DS006392 >>> dataset = DS006392(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006394(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006394. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 33; recordings: 60; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006394 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006394 DOI: https://doi.org/10.18112/openneuro.ds006394.v1.0.3
Examples
>>> from eegdash.dataset import DS006394 >>> dataset = DS006394(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006434(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006434. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 118; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006434 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006434 DOI: https://doi.org/10.18112/openneuro.ds006434.v1.2.0
Examples
>>> from eegdash.dataset import DS006434 >>> dataset = DS006434(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006437(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006437. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 9; recordings: 63; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006437 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006437 DOI: https://doi.org/10.18112/openneuro.ds006437.v1.1.0
Examples
>>> from eegdash.dataset import DS006437 >>> dataset = DS006437(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006446(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006446. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 29; recordings: 29; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006446 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006446 DOI: https://doi.org/10.18112/openneuro.ds006446.v1.0.0
Examples
>>> from eegdash.dataset import DS006446 >>> dataset = DS006446(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006459(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006459. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 176; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006459 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006459 DOI: https://doi.org/10.18112/openneuro.ds006459.v1.0.0
Examples
>>> from eegdash.dataset import DS006459 >>> dataset = DS006459(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006460(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006460. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 176; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006460 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006460
Examples
>>> from eegdash.dataset import DS006460 >>> dataset = DS006460(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006465(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006465. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 80; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006465 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006465 DOI: https://doi.org/10.18112/openneuro.ds006465.v2.0.0
Examples
>>> from eegdash.dataset import DS006465 >>> dataset = DS006465(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006466(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006466. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 66; recordings: 1257; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006466 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006466 DOI: https://doi.org/10.18112/openneuro.ds006466.v1.0.1
Examples
>>> from eegdash.dataset import DS006466 >>> dataset = DS006466(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006468(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006468. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 189; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006468 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006468 DOI: https://doi.org/10.18112/openneuro.ds006468.v1.1.2
Examples
>>> from eegdash.dataset import DS006468 >>> dataset = DS006468(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006480(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006480. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 68; recordings: 68; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006480 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006480 DOI: https://doi.org/10.18112/openneuro.ds006480.v1.0.1
Examples
>>> from eegdash.dataset import DS006480 >>> dataset = DS006480(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006502(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006502. Modality:meg; Experiment type:Unknown; Subject type:Motor skill learning and consolidation. Subjects: 32; recordings: 4758; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006502 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006502 DOI: https://doi.org/10.18112/openneuro.ds006502.v1.0.0
Examples
>>> from eegdash.dataset import DS006502 >>> dataset = DS006502(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006519(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006519. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 35; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006519 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006519 DOI: https://doi.org/10.18112/openneuro.ds006519.v1.0.0
Examples
>>> from eegdash.dataset import DS006519 >>> dataset = DS006519(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006525(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006525. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006525 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006525 DOI: https://doi.org/10.18112/openneuro.ds006525.v1.0.0
Examples
>>> from eegdash.dataset import DS006525 >>> dataset = DS006525(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006545(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006545. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 50; recordings: 838; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006545 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006545
Examples
>>> from eegdash.dataset import DS006545 >>> dataset = DS006545(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006547(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006547. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006547 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006547 DOI: https://doi.org/10.18112/openneuro.ds006547.v1.0.0
Examples
>>> from eegdash.dataset import DS006547 >>> dataset = DS006547(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006554(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006554. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006554 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006554 DOI: https://doi.org/10.18112/openneuro.ds006554.v1.0.0
Examples
>>> from eegdash.dataset import DS006554 >>> dataset = DS006554(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006563(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006563. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 12; recordings: 12; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006563 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006563 DOI: https://doi.org/10.18112/openneuro.ds006563.v1.0.0
Examples
>>> from eegdash.dataset import DS006563 >>> dataset = DS006563(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006576(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006576. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 48; recordings: 48; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006576 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006576 DOI: https://doi.org/10.18112/openneuro.ds006576.v1.0.2
Examples
>>> from eegdash.dataset import DS006576 >>> dataset = DS006576(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006593(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006593. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 21; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006593 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006593 DOI: https://doi.org/10.18112/openneuro.ds006593.v1.0.0
Examples
>>> from eegdash.dataset import DS006593 >>> dataset = DS006593(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006629(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006629. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 38; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006629 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006629 DOI: https://doi.org/10.18112/openneuro.ds006629.v1.0.1
Examples
>>> from eegdash.dataset import DS006629 >>> dataset = DS006629(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006647(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006647. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 4; recordings: 4; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006647 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006647 DOI: https://doi.org/10.18112/openneuro.ds006647.v1.0.1
Examples
>>> from eegdash.dataset import DS006647 >>> dataset = DS006647(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006648(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006648. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 47; recordings: 47; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006648 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006648 DOI: https://doi.org/10.18112/openneuro.ds006648.v1.0.0
Examples
>>> from eegdash.dataset import DS006648 >>> dataset = DS006648(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006673(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006673. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 1556; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006673 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006673 DOI: https://doi.org/10.18112/openneuro.ds006673.v1.0.2
Examples
>>> from eegdash.dataset import DS006673 >>> dataset = DS006673(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006695(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006695. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 19; recordings: 19; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006695 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006695 DOI: https://doi.org/10.18112/openneuro.ds006695.v1.0.2
Examples
>>> from eegdash.dataset import DS006695 >>> dataset = DS006695(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006720(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006720. Modality:meg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 246; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006720 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006720 DOI: https://doi.org/10.18112/openneuro.ds006720.v1.0.0
Examples
>>> from eegdash.dataset import DS006720 >>> dataset = DS006720(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006735(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006735. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 27; recordings: 27; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006735 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006735 DOI: https://doi.org/10.18112/openneuro.ds006735.v1.0.4
Examples
>>> from eegdash.dataset import DS006735 >>> dataset = DS006735(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006761(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006761. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 31; recordings: 31; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006761 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006761 DOI: https://doi.org/10.18112/openneuro.ds006761.v1.0.0
Examples
>>> from eegdash.dataset import DS006761 >>> dataset = DS006761(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006768(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006768. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 210; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006768 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006768 DOI: https://doi.org/10.18112/openneuro.ds006768.v1.1.0
Examples
>>> from eegdash.dataset import DS006768 >>> dataset = DS006768(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006801(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006801. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 21; recordings: 42; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006801 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006801 DOI: https://doi.org/10.18112/openneuro.ds006801.v1.0.0
Examples
>>> from eegdash.dataset import DS006801 >>> dataset = DS006801(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006802(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006802. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 24; recordings: 24; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006802 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006802 DOI: https://doi.org/10.18112/openneuro.ds006802.v1.0.0
Examples
>>> from eegdash.dataset import DS006802 >>> dataset = DS006802(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006803(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006803. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 63; recordings: 126; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006803 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006803 DOI: https://doi.org/10.18112/openneuro.ds006803.v1.0.0
Examples
>>> from eegdash.dataset import DS006803 >>> dataset = DS006803(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006817(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006817. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 34; recordings: 34; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006817 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006817 DOI: https://doi.org/10.18112/openneuro.ds006817.v1.0.0
Examples
>>> from eegdash.dataset import DS006817 >>> dataset = DS006817(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006839(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006839. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 36; recordings: 144; tasks: 4.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006839 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006839 DOI: https://doi.org/10.18112/openneuro.ds006839.v1.0.0
Examples
>>> from eegdash.dataset import DS006839 >>> dataset = DS006839(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006840(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006840. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 15; recordings: 128; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006840 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006840 DOI: https://doi.org/10.18112/openneuro.ds006840.v1.0.0
Examples
>>> from eegdash.dataset import DS006840 >>> dataset = DS006840(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006848(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006848. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 30; recordings: 52; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006848 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006848 DOI: https://doi.org/10.18112/openneuro.ds006848.v1.0.0
Examples
>>> from eegdash.dataset import DS006848 >>> dataset = DS006848(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006850(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006850. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 63; recordings: 126; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006850 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006850 DOI: https://doi.org/10.18112/openneuro.ds006850.v1.0.0
Examples
>>> from eegdash.dataset import DS006850 >>> dataset = DS006850(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006861(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006861. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 120; recordings: 239; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006861 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006861 DOI: https://doi.org/10.18112/openneuro.ds006861.v1.0.2
Examples
>>> from eegdash.dataset import DS006861 >>> dataset = DS006861(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006866(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006866. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 148; recordings: 148; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006866 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006866 DOI: https://doi.org/10.18112/openneuro.ds006866.v1.0.0
Examples
>>> from eegdash.dataset import DS006866 >>> dataset = DS006866(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006890(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006890. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 2; recordings: 870; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006890 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006890 DOI: https://doi.org/10.18112/openneuro.ds006890.v1.0.0
Examples
>>> from eegdash.dataset import DS006890 >>> dataset = DS006890(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006902(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006902. Modality:fnirs; Experiment type:Unknown; Subject type:pain, exercise. Subjects: 43; recordings: 259; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006902 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006902 DOI: https://doi.org/10.18112/openneuro.ds006902.v1.1.1
Examples
>>> from eegdash.dataset import DS006902 >>> dataset = DS006902(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006903(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006903. Modality:fnirs; Experiment type:Unknown; Subject type:Unknown. Subjects: 18; recordings: 409; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006903 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006903 DOI: https://doi.org/10.18112/openneuro.ds006903.v1.0.0
Examples
>>> from eegdash.dataset import DS006903 >>> dataset = DS006903(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006910(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006910. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 121; recordings: 384; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006910 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006910 DOI: https://doi.org/10.18112/openneuro.ds006910.v1.0.1
Examples
>>> from eegdash.dataset import DS006910 >>> dataset = DS006910(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006914(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006914. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 110; recordings: 353; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006914 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006914 DOI: https://doi.org/10.18112/openneuro.ds006914.v1.0.3
Examples
>>> from eegdash.dataset import DS006914 >>> dataset = DS006914(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006921(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006921. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 38; recordings: 152; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006921 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006921 DOI: https://doi.org/10.18112/openneuro.ds006921.v1.0.0
Examples
>>> from eegdash.dataset import DS006921 >>> dataset = DS006921(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006923(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006923. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 140; recordings: 280; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006923 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006923 DOI: https://doi.org/10.18112/openneuro.ds006923.v1.0.0
Examples
>>> from eegdash.dataset import DS006923 >>> dataset = DS006923(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006940(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006940. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 7; recordings: 935; tasks: 15.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006940 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006940 DOI: https://doi.org/10.18112/openneuro.ds006940.v1.0.0
Examples
>>> from eegdash.dataset import DS006940 >>> dataset = DS006940(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006945(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006945. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 5; recordings: 14; tasks: 3.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006945 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006945 DOI: https://doi.org/10.18112/openneuro.ds006945.v1.0.0
Examples
>>> from eegdash.dataset import DS006945 >>> dataset = DS006945(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS006963(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds006963. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 32; recordings: 32; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds006963 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds006963 DOI: https://doi.org/10.18112/openneuro.ds006963.v1.0.0
Examples
>>> from eegdash.dataset import DS006963 >>> dataset = DS006963(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007006(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007006. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 10; recordings: 50; tasks: 5.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007006 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007006 DOI: https://doi.org/10.18112/openneuro.ds007006.v1.0.0
Examples
>>> from eegdash.dataset import DS007006 >>> dataset = DS007006(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007020(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007020. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 94; recordings: 94; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007020 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007020 DOI: https://doi.org/10.18112/openneuro.ds007020.v1.0.0
Examples
>>> from eegdash.dataset import DS007020 >>> dataset = DS007020(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007081(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007081. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007081 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007081 DOI: https://doi.org/10.18112/openneuro.ds007081.v1.0.0
Examples
>>> from eegdash.dataset import DS007081 >>> dataset = DS007081(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007095(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007095. Modality:ieeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 8; recordings: 6019; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007095 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007095 DOI: https://doi.org/10.18112/openneuro.ds007095.v1.0.0
Examples
>>> from eegdash.dataset import DS007095 >>> dataset = DS007095(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007172(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007172. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 501; tasks: 6.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007172 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007172 DOI: https://doi.org/10.18112/openneuro.ds007172.v1.0.0
Examples
>>> from eegdash.dataset import DS007172 >>> dataset = DS007172(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007175(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007175. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 41; recordings: 41; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007175 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007175 DOI: https://doi.org/10.18112/openneuro.ds007175.v1.0.1
Examples
>>> from eegdash.dataset import DS007175 >>> dataset = DS007175(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.DS007176(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
ds007176. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 45; recordings: 300; tasks: 2.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/ds007176 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=ds007176 DOI: https://doi.org/10.18112/openneuro.ds007176.v1.0.1
Examples
>>> from eegdash.dataset import DS007176 >>> dataset = DS007176(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R1(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r1. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 136; recordings: 1342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r1 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r1 DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R1 >>> dataset = EEG2025R1(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R10(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r10. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 533; recordings: 2516; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r10 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r10
Examples
>>> from eegdash.dataset import EEG2025R10 >>> dataset = EEG2025R10(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R10MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r10mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 220; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r10mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r10mini
Examples
>>> from eegdash.dataset import EEG2025R10MINI >>> dataset = EEG2025R10MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R11(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r11. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 430; recordings: 3397; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r11 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r11
Examples
>>> from eegdash.dataset import EEG2025R11 >>> dataset = EEG2025R11(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R11MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r11mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 220; tasks: 8.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r11mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r11mini
Examples
>>> from eegdash.dataset import EEG2025R11MINI >>> dataset = EEG2025R11MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R1MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r1mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 239; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r1mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r1mini DOI: https://doi.org/10.18112/openneuro.ds005505.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R1MINI >>> dataset = EEG2025R1MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R2(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r2. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 150; recordings: 1405; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r2 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r2 DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R2 >>> dataset = EEG2025R2(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R2MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r2mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r2mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r2mini DOI: https://doi.org/10.18112/openneuro.ds005506.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R2MINI >>> dataset = EEG2025R2MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R3(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r3. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 184; recordings: 1812; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r3 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r3 DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R3 >>> dataset = EEG2025R3(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R3MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r3mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r3mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r3mini DOI: https://doi.org/10.18112/openneuro.ds005507.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R3MINI >>> dataset = EEG2025R3MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R4(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r4. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 324; recordings: 3342; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r4 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r4 DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R4 >>> dataset = EEG2025R4(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R4MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r4mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r4mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r4mini DOI: https://doi.org/10.18112/openneuro.ds005508.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R4MINI >>> dataset = EEG2025R4MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R5(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r5. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 330; recordings: 3326; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r5 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r5 DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R5 >>> dataset = EEG2025R5(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R5MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r5mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 240; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r5mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r5mini DOI: https://doi.org/10.18112/openneuro.ds005509.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R5MINI >>> dataset = EEG2025R5MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R6(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r6. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 135; recordings: 1227; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r6 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r6 DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R6 >>> dataset = EEG2025R6(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R6MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r6mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 237; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r6mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r6mini DOI: https://doi.org/10.18112/openneuro.ds005510.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R6MINI >>> dataset = EEG2025R6MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R7(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r7. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 381; recordings: 3100; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r7 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r7 DOI: https://doi.org/10.18112/openneuro.ds005511.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R7 >>> dataset = EEG2025R7(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R7MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r7mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 239; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r7mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r7mini DOI: https://doi.org/10.18112/openneuro.ds005511.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R7MINI >>> dataset = EEG2025R7MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R8(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r8. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 257; recordings: 2320; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r8 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r8 DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R8 >>> dataset = EEG2025R8(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R8MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r8mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 238; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r8mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r8mini DOI: https://doi.org/10.18112/openneuro.ds005512.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R8MINI >>> dataset = EEG2025R8MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R9(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r9. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 295; recordings: 2885; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r9 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r9 DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R9 >>> dataset = EEG2025R9(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEG2025R9MINI(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
EEG2025r9mini. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 20; recordings: 237; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/EEG2025r9mini NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=EEG2025r9mini DOI: https://doi.org/10.18112/openneuro.ds005514.v1.0.1
Examples
>>> from eegdash.dataset import EEG2025R9MINI >>> dataset = EEG2025R9MINI(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.EEGChallengeDataset(release: str, cache_dir: str, mini: bool = True, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetA dataset helper for the EEG 2025 Challenge.
This class simplifies access to the EEG 2025 Challenge datasets. It is a specialized version of
EEGDashDatasetthat is pre-configured for the challenge’s data releases. It automatically maps a release name (e.g., “R1”) to the corresponding OpenNeuro dataset and handles the selection of subject subsets (e.g., “mini” release).- Parameters:
release (str) – The name of the challenge release to load. Must be one of the keys in
RELEASE_TO_OPENNEURO_DATASET_MAP(e.g., “R1”, “R2”, …, “R11”).cache_dir (str) – The local directory where the dataset will be downloaded and cached.
mini (bool, default True) – If True, the dataset is restricted to the official “mini” subset of subjects for the specified release. If False, all subjects for the release are included.
query (dict, optional) – An additional MongoDB-style query to apply as a filter. This query is combined with the release and subject filters using a logical AND. The query must not contain the
datasetkey, as this is determined by thereleaseparameter.s3_bucket (str, optional) – The base S3 bucket URI where the challenge data is stored. Defaults to the official challenge bucket.
**kwargs – Additional keyword arguments that are passed directly to the
EEGDashDatasetconstructor.
- Raises:
ValueError – If the specified
releaseis unknown, or if thequeryargument contains adatasetkey. Also raised ifminiis True and a requested subject is not part of the official mini-release subset.
See also
EEGDashDatasetThe base class for creating datasets from queries.
- class eegdash.dataset.dataset.EEGDashDataset(cache_dir: str | Path, query: dict[str, Any] = None, description_fields: list[str] | None = None, s3_bucket: str | None = None, records: list[dict] | None = None, download: bool = True, n_jobs: int = -1, eeg_dash_instance: Any = None, database: str | None = None, auth_token: str | None = None, **kwargs)[source]
Bases:
BaseConcatDatasetCreate a new EEGDashDataset from a given query or local BIDS dataset directory and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset instances (individual recordings) and is a subclass of braindecode’s BaseConcatDataset.
Examples
Basic usage with dataset and subject filtering:
>>> from eegdash import EEGDashDataset >>> dataset = EEGDashDataset( ... cache_dir="./data", ... dataset="ds002718", ... subject="012" ... ) >>> print(f"Number of recordings: {len(dataset)}")
Filter by multiple subjects and specific task:
>>> subjects = ["012", "013", "014"] >>> dataset = EEGDashDataset( ... cache_dir="./data", ... dataset="ds002718", ... subject=subjects, ... task="RestingState" ... )
Load and inspect EEG data from recordings:
>>> if len(dataset) > 0: ... recording = dataset[0] ... raw = recording.load() ... print(f"Sampling rate: {raw.info['sfreq']} Hz") ... print(f"Number of channels: {len(raw.ch_names)}") ... print(f"Duration: {raw.times[-1]:.1f} seconds")
Advanced filtering with raw MongoDB queries:
>>> from eegdash import EEGDashDataset >>> query = { ... "dataset": "ds002718", ... "subject": {"$in": ["012", "013"]}, ... "task": "RestingState" ... } >>> dataset = EEGDashDataset(cache_dir="./data", query=query)
Working with dataset collections and braindecode integration:
>>> # EEGDashDataset is a braindecode BaseConcatDataset >>> for i, recording in enumerate(dataset): ... if i >= 2: # limit output ... break ... print(f"Recording {i}: {recording.description}") ... raw = recording.load() ... print(f" Channels: {len(raw.ch_names)}, Duration: {raw.times[-1]:.1f}s")
- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Raw MongoDB query to filter records. If provided, it is merged with keyword filtering arguments (see
**kwargs) using logical AND. You must provide at least adataset(either inqueryor as a keyword argument). Only fields inALLOWED_QUERY_FIELDSare considered for filtering.dataset (str) – Dataset identifier (e.g.,
"ds002718"). Required ifquerydoes not already specify a dataset.task (str | list[str]) – Task name(s) to filter by (e.g.,
"RestingState").subject (str | list[str]) – Subject identifier(s) to filter by (e.g.,
"NDARCA153NKE").session (str | list[str]) – Session identifier(s) to filter by (e.g.,
"1").run (str | list[str]) – Run identifier(s) to filter by (e.g.,
"1").description_fields (list[str]) – Fields to extract from each record and include in dataset descriptions (e.g., “subject”, “session”, “run”, “task”).
s3_bucket (str | None) – Optional S3 bucket URI (e.g., “s3://mybucket”) to use instead of the default OpenNeuro bucket when downloading data files.
records (list[dict] | None) – Pre-fetched metadata records. If provided, the dataset is constructed directly from these records and no MongoDB query is performed.
download (bool, default True) – If False, load from local BIDS files only. Local data are expected under
cache_dir / dataset; no DB or S3 access is attempted.n_jobs (int) – Number of parallel jobs to use where applicable (-1 uses all cores).
eeg_dash_instance (EEGDash | None) – Optional existing EEGDash client to reuse for DB queries. If None, a new client is created on demand, not used in the case of no download.
database (str | None) – Database name to use (e.g., “eegdash”, “eegdash_staging”). If None, uses the default database.
auth_token (str | None) – Authentication token for accessing protected databases. Required for staging or admin operations.
**kwargs (dict) –
Additional keyword arguments serving two purposes:
Filtering: any keys present in
ALLOWED_QUERY_FIELDSare treated as query filters (e.g.,dataset,subject,task, …).Dataset options: remaining keys are forwarded to
EEGDashRaw.
- datasets: list[T]
- download_all(n_jobs: int | None = None) None[source]
Download missing remote files in parallel.
- Parameters:
n_jobs (int | None) – Number of parallel workers to use. If None, defaults to
self.n_jobs.
- save(path, overwrite=False)[source]
Save the dataset to disk.
- Parameters:
path (str or Path) – Destination file path.
overwrite (bool, default False) – If True, overwrite existing file.
- Return type:
None
- class eegdash.dataset.dataset.NM000103(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000103. Modality:eeg; Experiment type:Unknown; Subject type:Unknown. Subjects: 447; recordings: 3522; tasks: 10.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000103 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000103 DOI: https://doi.org/10.5281/zenodo.17306881
Examples
>>> from eegdash.dataset import NM000103 >>> dataset = NM000103(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.NM000104(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000104. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 108; recordings: 1135; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000104 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000104 DOI: https://doi.org/10.5281/zenodo.17287903
Examples
>>> from eegdash.dataset import NM000104 >>> dataset = NM000104(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.NM000105(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000105. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 100; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000105 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000105 DOI: https://doi.org/10.5281/zenodo.17283593
Examples
>>> from eegdash.dataset import NM000105 >>> dataset = NM000105(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.NM000106(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000106. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 807; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000106 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000106 DOI: https://doi.org/10.5281/zenodo.17283865
Examples
>>> from eegdash.dataset import NM000106 >>> dataset = NM000106(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()
- class eegdash.dataset.dataset.NM000107(cache_dir: str, query: dict | None = None, s3_bucket: str | None = None, **kwargs)[source]
Bases:
EEGDashDatasetOpenNeuro dataset
nm000107. Modality:emg; Experiment type:Unknown; Subject type:Unknown. Subjects: 100; recordings: 182; tasks: 1.- Parameters:
cache_dir (str | Path) – Directory where data are cached locally.
query (dict | None) – Additional MongoDB-style filters to AND with the dataset selection. Must not contain the key
dataset.s3_bucket (str | None) – Base S3 bucket used to locate the data.
**kwargs (dict) – Additional keyword arguments forwarded to
EEGDashDataset.
- data_dir
Local dataset cache directory (
cache_dir / dataset_id).- Type:
Path
- query
Merged query with the dataset filter applied.
- Type:
dict
- records
Metadata records used to build the dataset, if pre-fetched.
- Type:
list[dict] | None
Notes
Each item is a recording; recording-level metadata are available via
dataset.description.querysupports MongoDB-style filters on fields inALLOWED_QUERY_FIELDSand is combined with the dataset filter. Dataset-specific caveats are not provided in the summary metadata.References
OpenNeuro dataset: https://openneuro.org/datasets/nm000107 NeMAR dataset: https://nemar.org/dataexplorer/detail?dataset_id=nm000107 DOI: https://doi.org/10.5281/zenodo.17282507
Examples
>>> from eegdash.dataset import NM000107 >>> dataset = NM000107(cache_dir="./data") >>> recording = dataset[0] >>> raw = recording.load()