.. This documentation page is generated during the Sphinx build. The underlying code is manually maintained and not autogenerated. eegdash.dataset.DS003800 ======================== participants.tsv (OpenNeuro ``ds003800``). Access recordings and metadata through EEGDash. .. rst-class:: sd-badges :bdg-primary:`Modality: eeg` :bdg-info:`Tasks: 2` :bdg-secondary:`Subjects: 13` :bdg-secondary:`Recordings: 24` .. rst-class:: sd-badges :bdg-success:`License: CC0` :bdg-warning:`Source: openneuro` Dataset Information ------------------- .. list-table:: :widths: 25 75 :header-rows: 0 * - Dataset ID - ``DS003800`` * - Title - participants.tsv * - Year - 2021 * - Authors - Mojtaba Lahijanian, Mohammad Javad Sedghizadeh, Hamid Aghajan, Zahra Vahabi * - License - CC0 * - Citation / DOI - `10.18112/openneuro.ds003800.v1.0.0 `__ * - Source links - `OpenNeuro `__ | `NeMAR `__ | `Source URL `__ .. dropdown:: Copy-paste BibTeX :class-container: sd-shadow-sm :class-title: sd-bg-light .. code-block:: bibtex @dataset{ds003800, title = {participants.tsv}, author = {Mojtaba Lahijanian and Mohammad Javad Sedghizadeh and Hamid Aghajan and Zahra Vahabi}, doi = {10.18112/openneuro.ds003800.v1.0.0}, url = {https://doi.org/10.18112/openneuro.ds003800.v1.0.0}, } Highlights ---------- .. grid:: 1 2 3 3 :gutter: 2 .. grid-item-card:: Subjects & recordings :class-card: sd-border-1 - Subjects: 13 - Recordings: 24 - Tasks: 2 .. grid-item-card:: Channels & sampling rate :class-card: sd-border-1 - Channels: 19 - Sampling rate (Hz): 250.0 - Duration (hours): 0.0 .. grid-item-card:: Tasks & conditions :class-card: sd-border-1 - Tasks: 2 - Experiment type: — - Subject type: — .. grid-item-card:: Files & format :class-card: sd-border-1 - Size on disk: 189.3 MB - File count: 24 - Format: BIDS .. grid-item-card:: License & citation :class-card: sd-border-1 - License: CC0 - DOI: 10.18112/openneuro.ds003800.v1.0.0 .. grid-item-card:: Provenance :class-card: sd-border-1 - Source: openneuro - OpenNeuro: `ds003800 `__ - NeMAR: `ds003800 `__ Quickstart ---------- **Install** .. code-block:: bash pip install eegdash **Access the data** .. code-block:: python from eegdash.dataset import DS003800 dataset = DS003800(cache_dir="./data") # Get the raw object of the first recording raw = dataset.datasets[0].raw print(raw.info) **Filter/query** .. tab-set:: .. tab-item:: Basic .. code-block:: python dataset = DS003800(cache_dir="./data", subject="01") .. tab-item:: Advanced .. code-block:: python dataset = DS003800( cache_dir="./data", query={"subject": {"$in": ["01", "02"]}}, ) Quality & caveats ----------------- - No dataset-specific caveats are listed in the available metadata. API --- .. currentmodule:: eegdash.dataset .. autoclass:: eegdash.dataset.DS003800 :members: __init__, save :show-inheritance: :member-order: bysource See Also -------- * :class:`eegdash.dataset.EEGDashDataset` * :mod:`eegdash.dataset` * `OpenNeuro dataset page `__ * `NeMAR dataset page `__