.. This documentation page is generated during the Sphinx build. The underlying code is manually maintained and not autogenerated. eegdash.dataset.DS002001 ======================== Rivalry_Tagging (OpenNeuro ``ds002001``). Access recordings and metadata through EEGDash. .. rst-class:: sd-badges :bdg-light:`Modality: ['meg']` :bdg-light:`Tasks: 0` :bdg-light:`License: PD` :bdg-light:`Subjects: 0` :bdg-light:`Recordings: 0` :bdg-light:`Source: openneuro` Dataset Information ------------------- .. list-table:: :widths: 25 75 :header-rows: 0 * - Dataset ID - ``DS002001`` * - Title - Rivalry_Tagging * - Year - Unknown * - Authors - Janine Mendola, Elizabeth Bock * - License - PD * - Citation / DOI - `10.18112/openneuro.ds002001.v1.0.0 `__ * - Source links - `OpenNeuro `__ | `NeMAR `__ | `Source URL `__ .. dropdown:: Copy-paste BibTeX :class-container: sd-shadow-sm :class-title: sd-bg-light .. code-block:: bibtex @dataset{ds002001, title = {Rivalry_Tagging}, author = {Janine Mendola and Elizabeth Bock}, doi = {10.18112/openneuro.ds002001.v1.0.0}, url = {https://doi.org/10.18112/openneuro.ds002001.v1.0.0}, } Highlights ---------- .. grid:: 1 2 3 3 :gutter: 2 .. grid-item-card:: Subjects & recordings :class-card: sd-border-1 - Subjects: 0 - Recordings: 0 - Tasks: 0 .. grid-item-card:: Channels & sampling rate :class-card: sd-border-1 - Channels: Unknown - Sampling rate (Hz): Unknown - Duration (hours): 0 .. grid-item-card:: Tasks & conditions :class-card: sd-border-1 - Tasks: 0 - Experiment type: Unknown - Subject type: Unknown .. grid-item-card:: Files & format :class-card: sd-border-1 - Size on disk: Unknown - File count: Unknown - Format: Unknown .. grid-item-card:: License & citation :class-card: sd-border-1 - License: PD - DOI: 10.18112/openneuro.ds002001.v1.0.0 .. grid-item-card:: Provenance :class-card: sd-border-1 - Source: openneuro - OpenNeuro: `ds002001 `__ - NeMAR: `ds002001 `__ Quickstart ---------- **Install** .. code-block:: bash pip install eegdash **Load a recording** .. code-block:: python from eegdash.dataset import DS002001 dataset = DS002001(cache_dir="./data") recording = dataset[0] raw = recording.load() **Filter/query** .. tab-set:: .. tab-item:: Basic .. code-block:: python dataset = DS002001(cache_dir="./data", subject="01") .. tab-item:: Advanced .. code-block:: python dataset = DS002001( cache_dir="./data", query={"subject": {"$in": ["01", "02"]}}, ) Quality & caveats ----------------- - No dataset-specific caveats are listed in the available metadata. API --- .. currentmodule:: eegdash.dataset .. autoclass:: eegdash.dataset.DS002001 :members: __init__, save :show-inheritance: :member-order: bysource See Also -------- * :class:`eegdash.dataset.EEGDashDataset` * :mod:`eegdash.dataset` * `OpenNeuro dataset page `__ * `NeMAR dataset page `__